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A bstract

The goal of this thesis is to exploit stochastic (noise-driven or Monte Carlo) approaches 
for generic derivative-free optimization, and to apply these methods to various machine 
learning problems, including unsupervised learning for perceptual systems and supervised 
learning for training neural networks.

We review the root of correlation-based learning and introduce a correlation-based 
gradient-free optimization procedure, which is known as ALOPEX (ALgorithm Of Pat
tern Extraction). As a generic optimization framework, the ALOPEX-type algorithms 
have certain advantageous features: (i) gradient-free; (ii) network architecture indepen
dence; (iii) synchronous learning; and (iv) using noise to help escape local minima or 
maxima. These appealing features make the ALOPEX be a useful tool for many non- 
convex optimization and machine learning problems. We have successfully applied the 
ALOPEX-type algorithms for many perceptual learning tasks. We have, for the first time, 
applied the algorithm to several classic figure-ground segregation perceptual tasks in sen
sory perception and reported some novel findings. We also pioneer to apply the ALOPEX 
algorithm to learn a Neurocompensator for hearing compensation as an ingredient of the 
hearing-aid design.

We have provided a systematical overview of Bayesian estimation, Monte Carlo sam
pling and optimization. In particular, we have applied sequential Monte Carlo sam
pling methods, within the Bayesian framework, to both state and parameter estimation 
problems. In sequential state estimation, we have applied particle filtering, with several 
proposed improvement schemes, to the tracking problems, including a real-life multiple- 
input-multiple-output (MIMO) wireless channel estimation problem. In parameter esti
mation, we have proposed two novel Monte Carlo sampling-based ALOPEX algorithms 
for optimization and training neural networks. Experiments on various learning tasks, 
including pattern recognition, on-line financial data prediction, on-line system identifica
tion, and chaotic time series prediction, have demonstrated the efficacy and strengths of 
our proposed algorithms.

In summary, we have addressed a unified philosophical and technical theme in this 
thesis; we have presented some new theoretical propositions, several novel algorithmic 
developments, as well as many successful (including some novel) applications.
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A bbreviations and Sym bols

ABBREVIATIONS

a.k.a. also known as
ALOPEX algorithm of pattern extraction
APF auxiliary particle filter
AR auto-regressive
ARMA auto-regressive-moving-average
BIC Bayesian information criterion
BLAST Bell laboratories layered space-time
BPTT back-propagation through time
BSS blind source separation
CNN convolution neural network
CT coordinated turn
DSTBC differential space-time block codes
e.g. exempli gratia
EKF extended Kalman filter
EM expectation-maximization
FA factor analysis
FFT fast Fourier transform
FPE Fokker-Planck equation
HMC hybrid Monte Carlo
HMM hidden Markov model
ICA independent component anlaysis
i.e. id est
i.i.d. independent, identically distributed
IPS interacting particle systems
JADE joint approximate diagonalization of eigen-matrices
KL Kullback-Leibler (divergence)
LGN lateral geniculate nucleus
LMS least-mean-square
MAP maximum a posteriori
MCMC Markov chain Monte Carlo
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MDL minimum description length
MIMO multiple-input, multiple-output
MISO multiple-input, single-output
MDP Markov decision process
MKF mixture Kalman filters
MLE maximum-likelihood estimate
MLP multilayer perceptron
MMI minimum mutual information
MMSE minimum mean-squared-error
NMSE normalized mean-squared-error
MSE mean-squared error
NP non-deterministic polynomial-time
PCA principal component analysis
pdf probability density function
pmf probability mass function
PoEs products of experts
PSK phase-shift keying
OE output error
RBF radial basis function
RLS recursive least-squares
RMLP recurrent multilayer perceptron
RTRL real-time recurrent learning
SDE stochastic differential equation
SER symbol error rate
SIR sampling-importance-resampling
SIS sequential importance sampling
SISO siingle-input, single-output
SNR signal-to-noise ratio
SOM self-organizing map
s.t. subject to, such that
STBD space-time block decoder
STFT short-term Fourier transform
TD temporal difference
TPF Turbo-particle filter
UKF unscented Kalman filter
UPF unscented particle filter
w.r.t. with respect to

IMPORTANT SYMBOLS

T  free energy

vui

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

H Hamiltonian energy
K kinetic energy
E error metric, objective function; potential energy
E[-] mathematical expectation
/ generic nonlinear function
H Shannon (differential) entropy
h 2 Renyi quadratic entropy
J negentropy
K kernel function; number of mixtures or clusters
i the number of data (observations)
C log-likelihood
r*̂ av average log-likelihood
M model
Np number of particles
Nr number of receivers
Nt number of transmitters
Neff estimated effective particle number
Nkl sample impoverishment measure
O(-) order of
p(x),q(x) probability density function
V ,Q probability metric space; probability set
E real number set
T temperature; maturity time
s (t) source signal
x(t) mixed signal
y(t) demixed signal
d dynamical noise
V measurement noise
X input vector; hidden state vector
y output vector; observation vector
A mixing matrix
H Hessian matrix, input-output mapping
I identity matrix
J Jacobian matrix
R rotation matrix
X channel matrix
W demxing matrix
w synaptic weights
W importance weight
W normalized importance weight
z normalizing constant
Sgli(-) signum function
t ,n continous/discrete time index
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tanh hyperbolic tangent function
tr(A) trace of matrix A
det(A) determinant of matrix A
adj(A) adjoint matrix of matrix A
cond(A) condition number of matrix A
rank(A)  rank of matrix A
diag{} diagonal matrix
Var[-] variance
Cov[-] covariance
kurt(-) kurtosis
||x|| Euclidean (L2) norm of vector x
|x|oo Lqo norm of vector x
A  linear operator
89 infinitesimal change of 9
AG change of vector 0
V gradient operator
9 parameter
/3 momentum coefficient; AR coefficient
r] learning rate, step-size
7 step-size
p  mean vector
p  momentum vector (in kinetic energy)
A forgetting factor; eigenvalue
a  singular value; standard deviation; regularization coefficient
oi(x, x') probability of move
£  covariance matrix
£ noise; index parameter
U(a, b) uniform distribution in region (a, b)
N ( p ,  £ ) Gaussian distribution with mean p  and covariance £
C (p ,  £ ) complex Gaussian distribution with (complex-valued) mean p  and covariance £
7r(-) invariant probability distribution
p(-) probability density function
q(-) proposal distribution
D{jp\\q) Kullback-Leibler divergence between distributions p  and q
sgn(-) signum function
</>(•) logistic sigmoid function
']/(•) activation function
( • ) average
Fs sampling frequency

transpose operator
sample from or distributed according to

T

x
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Chapter 1 

Introduction

“I ’m a machine and you’re a machine, and we both think, don’t we?”

— Claude E. Shannon

1.1 Learning

Learning is an essential component of intelligent behavior of human beings in daily life 
since the day of their births. By intelligence, we mean “the capacity to learn or to profit 
by experience” and “a biological mechanism by which the effects of a complexity of stimuli 
are brought together and given a somewhat unified effect in behavior” (Pfeifer and Scheier, 
1999, Chap. 1). The notion of intelligence is omnipresent in almost every human activity 
involved, such as perception, action, thinking, memory recall, recognition, and etc.

As an interactive, interdisciplinary subject between cognitive science and artificial in
telligence, machine learning is devoted to discovering, exploring, and applying the general 
principles of intelligence. The main goal of machine learning is to mimic, augment, or 
outperform (if possible) human learning to perform certain intelligent tasks.

Mathematically, the problem of learning consists of three aspects of endeavor: esti
mation, approximation, and computation.

E stim ation  is a statistical problem. Given the observed data, the statistical estimation 
is to search for the most likely hypothesis within a large class of hypothesis spaces. 
There might exist several different hypotheses that all yield the same accuracy on 
the observed data. The learning algorithm is supposed to pick one of them that gen
eralizes well on the out-of-the-sample data; this is often achieved by imposing certain 
constraints (e.g., smoothness) on the hypothesis space (e.g., functional space), or 
by pursuing some inductive principles (e.g., minimum description length, Bayesian 
inference, structural risk minimization). Roughly speaking, estimation is concerned 
with reducing the variance of the estimator.

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

A pp roxim ation  is a representation problem. The representation problem arises when 
the chosen hypothesis space might not contain any hypothesis that yields a good 
approximation to the true function to be estimated. Then the learning algorithm 
aims to search a representation using an approximate hypothesis (or a weighted 
sum of hypotheses). The approximation problem also arises when the complexity 
of the model is concerned. Roughly speaking, approximation is concerned with 
reducing the bias of the estimator. Choosing a suitable model with a certain level of 
complexity is essentially finding a good tradeoff for the bias vs. variance dilemma.

C om pu tation  is an optimization problem. Given the data and the representation model, 
computation aims to search a set of optimal or suboptimal parameters in the param
eter space, subject to certain constraints (e.g., criterion of optimality, computation 
power or time, etc.). The procedure that leads to the parameter update is called 
the optimization or learning rule.

In the literature, learning can be categorized into three major types according to the 
nature of the task: supervised learning (learning with teachers), unsupervised learning 
(learning without teachers), and reinforcement learning (learning with critics).

Supervised  learn ing can be understood as a multivariate function approximation prob
lem; in the statistical jargon, it amounts to regression for a specific parametric or 
nonparameteric model.1

U nsu p ervised  learn ing is aimed at learning the structure or regularity of the data 
(Hinton and Sejnowski, 1999); unsupervised learning exploits the basic information- 
processing principles (e.g., self-organization, maximum entropy) via either bottom-up 
or top-down approaches.

R einforcem ent learn ing can be understood as a Markov decision process (MDP) aimed 
at learning which actions lead to optimal outcomes; it is aimed to solve a temporal 
credit assignment problem (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996). 
Rooted in dynamic programming, reinforcement learning has been extended for 
varieties of prediction and control problems.

The current thesis focuses on supervised and unsupervised learning.

1.1.1 Learning and Inference

Learning can be regarded as a statistical inference problem. Using statistical inference 
principles (e.g., maximum likelihood, Bayesian inference), learning attempts to character
ize the statistical dependence underlying the analyzed data. On the other hand, learning 
also differs from inference in a number of ways: (i) Inference focuses on finding the most

1 Classification can be viewed as a special example of regression.
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likely explanation of the observed data; but inference itself often ignores (or assumes) 
the statistical model to be used; it does not take account into the issue of model se
lection, thereby running into the risk of over fitting, whereas a learning task consists of 
learning the model as well as learning the data, (ii) In Bayesian inference, inference is 
pursued by using Bayes’ rule by assuming priors, whereas Bayesian learning often super
imposes learning the priors as well as other parameters (e.g., regularization parameter, 
hyper parameter), (iii) For many adaptive systems, learning has to precede the inference 
procedure. For instance, a complete inference appears possible only when the hidden 
Markov model (HMM) is first learned by the forward-backward Baum-Welch algorithm, 
and then followed by the inference conducted through the Viterbi algorithm to obtain a 
maximum a posteriori (MAP) estimate.

1.1 .2  L earning and O p tim iza tion

Learning can be regarded as an optimization problem. Given a predefined objective 
function, the common goal of learning is to find an optimization procedure to minimize 
(or maximize) the objective function.

As far as the optimization problem itself is concerned, optimization can be classified 
into several categories:

•  constrained vs. unconstrained optimization. In some cases, constrained optimization 
can be transformed into an unconstrained optimization problem via the Lagrange 
multiplier.

•  convex vs. nonconvex optimization. Convex optimization has many nice properties 
such as global optimality; the solution induced from convex optimization is often 
global or approximately global. Many nonconvex optimization problems are NP- 
complete or NP-hard, thereby involving the necessity of an approximate solution or 
Monte Carlo simulation.

•  exact vs. approximate optimization. Exact optimization searches for the exact so
lution in all the hypothesis space. In contrast, approximate optimization attempts 
to find a reasonably good solution given certain accuracy or computation time con
straints. For instance, bound optimization and variational optimization are typi
cal approximate methods. Many solutions to NP-hard combinatorial optimization 
problems are approximate.

•  deterministic vs. stochastic optimization. Deterministic optimization treats the 
parameters to be optimized as deterministic variables, and the underlying system 
is also deterministic; or, the optimization procedure is just purely deterministic. In 
contrast, stochastic optimization involves some factors of uncertainty, such as noise 
or random perturbation; the parameters are often treated as random variables. 
Bayesian-type optimization strategies also belong to stochastic optimization.
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•  gradient-based vs. gradient-free optimization. Gradient-based algorithms are the 
most popular optimization schemes, which are simply based on the hill-climbing 
heuristic but do not guarantee to reach the global solution in the non-convex system. 
Gradient descent/ascent can get stuck in stationary points (local minima/maxima); 
gradient-type algorithms (e.g., Bertsekas, 1999) can be either first-order (such as 
the gradient-descent and conjugate gradient), or second-order (such as Levenberg- 
Marquardt), or approximate second-order (such as the quasi-Newton type). In 
contrast, gradient-free optimization often involves a gradient approximation and 
uses it to guide the search direction; examples of this type include line search, 
simplex algorithm, and Powell’s method (Press et al., 1992; Bertsekas, 1999).

1.1 .3  V o lition  and Free W ill

In studying the human mind, philosophers have suggested the concepts of volition and free 
will. The notion of volition characterizes the deterministic nature of the mind, whereas 
free will accounts for the probabilistic or stochastic strategy that is used for decisions. 
Understanding and reconciling the volition-and-freewill paradox is an ever-going research 
subject.

It should be emphasized here that randomness is ubiquitous in every aspect of hu
man activities. In a macroscopic level, the environment outside each human entity is 
surrounded by countless random, unpredictable events. In a microscopic level inside the 
human brain, it is well known that the firing rate of the neurons fluctuates significantly, 
as a clear evidence of randomness.2

In physics, Newton mechanics is deterministic, whereas quantum mechanics introduces 
uncertainty to the microscopic world; the motion of a particle following the wave equation 
is probabilistic. Physicists have used the volition-and-freewill analogy to illustrate many 
paradoxical physical phenomena.

In neuroscience, the volition-and-freewill analogy has also been brought into the dis
cussions of the uncertainty of human brain and behavior (Glimcher, 2003).

In cell biology and genetics, the volition-and-freewill analogy is also used to explain 
the mystery of the genes in DNA.

In economics, economists have attempted to use the volition-and-freewill analogy to 
explain the rationality and uncertainty of the market.

Here, we attempt to abuse such an analogy, and use this metaphor for the learning 
and optimization problems. To illustrate the optimization problem, let us use an analogy 
of a hill-climbing task. If a person intends to approach the highest position among the 
mountains, while the hills are separated by many steep valleys. It is known that the simple,

2Note that however, it is not the mean firing rate, but its correlation that are vital to information 
processing. Neurophysiological studies has evidenced that higher-order correlations and fluctuations play
an important role in the nervous systems.

4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

deterministic hill-climbing strategy cannot assure one to reach the zenith; on the other 
hand, exhaustive random search is theoretically plausible but not realistic. Simply put, 
deterministic optimization strategy is beneficial in providing a good hint for the search 
direction; stochastic optimization strategy exploits the randomness to escape from the 
local valley in a bumpy potential well. Therefore, using a mixed strategy by integrating 
the features of the deterministic and stochastic optimization, it is likely to yield a better 
solution.

1.2 B ayesianism

Bayesian theory was originally discovered by Thomas Bayes in a posthumous publica
tion in 1763 (Bayes, 1763). The well-known Bayes theorem describes the fundamental 
probability law governing the process of logical inference. However, Bayesian theory has 
not gained its deserved attention in the early days until its modern form was rediscov
ered by the French mathematician Pierre-Simon de Laplace in Theorie analytique des 
probailites.3 Bayesian inference (Bernardo and Smith, 1998; Robert, 2001), devoted to 
applying Bayesian statistics to statistical inference, has become one of the important 
branches in statistics, and has been applied successfully in statistical decision, detection 
and estimation, expert systems, machine learning, and even used for understanding the 
probabilistic functions of the brain (Knills and Richard, 1995; Rao, 1999; Rao et ah, 2002). 
A philosophical question even arises in computational neuroscience: Do people perform a 
Bayesian-like thinking in the daily life? Specifically, the November 19 issue of 1999 S c i
e n c e  magazine has given the Bayesian research boom a four-page special attention. In 
many scenarios, the solutions gained through Bayesian inference are viewed as “optimal” , 
in that the Bayesian solution combines prior knowledge and takes quantitative account 
of the uncertainty and evidence. In this thesis, we will focus attention on a sequen
tial Bayesian estimation technique called particle filtering, rooted in Bayesian theory and 
Monte Carlo simulation; specifically, we will apply this powerful tool to various inference 
(state estimation) and learning (parameter estimation) problems. Quite interestingly, it 
is noted that there have been recent efforts to suggest particle filtering might serve a 
functional role in human visual and motor cortices (Lee and Mumford, 2003; Brockwell 
et ah, 2004).

1.3 R oadm ap

The two main themes of the thesis are stochastic correlative learning and Monte Carlo 
optimization and inference.

The notion of correlation-based learning can be traced back to the Greek philosopher 
Aristotle. The early formulation of correlative learning related to the brain process was

3An interesting history of Thomas Bayes and its famous essay is found in (Dale, 1991).
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due to William James (1890; see also (Anderson and Rosenfeld, 1988)). Specifically, it 
was stated that (.James, 1890, Chap. XVI):

“When two elementary brain-processes have been active together or in 
immediate succession, one of them, on re-occurring, tends to propagate its 
excitement into the other.”

However, the formal establishment of correlation-based learning was credited to Donald 
Hebb, whose postulate is thus named as Hebbian learning (Hebb, 1949). Describing a 
correlative synaptic mechanism, Hebbian learning is a local rule, therefore it is physiolog
ically (Stent, 1973) and biologically plausible (see 13i and Poo, 2001, for a review). More 
specifically, the modification of the synaptic strength depends on the pre- and postsynap- 
tic firing rates and the present value of the synapse. Many variants of correlation-based 
learning and rate-based learning rules have been developed (Willshaw et al., 1969; Gross- 
berg, 1976; Bienenstock et ah, 1982). See (Sejnowski and Tesauro, 1989) for some reviews.

The idea of using Monte Carlo simulation for optimization is not new; genetic algo
rithms (e.g., Goldberg, 1989) and simulated annealing (Kirkpatrick et ah, 1983) are two 
representative examples. Recently, many sophisticated sampling-based algorithms have 
been developed for machine learning, such as the Gibbs sampling (Geman and Geman, 
1984), Monte Carlo expectation-maximization (EM) algorithm (McLachlan and Krishnan, 
1997), dynamic weighting (Wong and Liang, 1997), Fisher scoring (Briegel and Tresp, 
1999), and the HySIR algorithm (deFreitas, 1999; deFreitas et ah, 2000). See (Andrieu 
et ah, 2003) for an excellent review.

In the thesis, we apply stochastic optimization procedures, rooted in correlation-based 
learning, to a variety of learning and optimization problems. A particular gradient-free op
timization procedure, called ALOPEX (ALgorithm Of Pattern Extraction), is extensively 
studied. One of the distinct features of the ALOPEX is to use the noise for optimization. 
In addition, motivated by sequential Monte Carlo sampling and Bayesian estimation, we 
develop two novel sequential Monte Carlo sampling-based ALOPEX algorithms for opti
mization and training neural networks. The idea behind that is to boost the convergence 
performance of conventional ALOPEX by introducing Monte Carlo simulations. Sur
rounding the main thesis theme, we also propose several improved schemes for particle 
filtering and investigate several problems related to machine learning.

1.4 O rganization

The thesis contains seven chapters, and the organization is as follows. After the intro
ductory chapter, correlation-based learning paradigms are briefly reviewed in Chapter 
2, in which the ALOPEX algorithm and its variants are introduced. In Chapter 3, a 
stochastic correlative learning rule, as a variant of the ALOPEX, is applied to three clas
sic figure-ground segregation perceptual tasks. In Chapter 4, we describe the perceptual
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learning procedure for hearing compensation, and apply the developed ALOPEX algo
rithm for gradient-free optimization. In Chapter 5, we present the underlying theory of 
sequential Monte Carlo and MCMC methods for Bayesian estimation; we also propose two 
improved schemes and apply them to two synthetic and one real-life tracking problems 
within the Bayesian sequential state estimation framework. In Chapter 6, we present two 
novel sampling-based ALOPEX algorithms, rooted in particle filtering and ALOPEX, for 
sequential parameter estimation. In particular, we apply the algorithms to train neural 
networks for a variety of tasks, including pattern recognition, financial data prediction, 
and system identification. Finally, we summarize and conclude the thesis in Chapter 7.

1.5 C ontributions

This dissertation was accomplished by my own intellectual work, the contributed work 
due to the other researchers or collaborators is acknowledged at the appropriate position 
throughout the text. The contributions closely related to this dissertation are summarized 
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•  Z. Chen, T. Kirubarajan, and M. Morelande (2004). Improved particle filtering 
schemes for target tracking. To appear in Proc. ICASSP2005, Philadelphia, USA. 
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•  Z. Chen, S. Becker, J. Bondy, I. Bruce, and S. Haykin (2004). A novel, gradient-free 
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under review. (Chap. 4)
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using a stochastic correlative learning rule, to be submitted. (Chap. 3)
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under revision. (Chap. 3)
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Chapter 2 

Correlation-Based Learning

“A learning machine is any device whose actions are influenced by past experiences. ”

—- Nils Nilsson, Learning Machines

Correlation, be it in regards to the autocorrelation function of a prescribed signal 
or the cross-correlation function between a pair of somewhat similar signals, is basic to 
statistical signal processing. Its origin, in the context of random processes, may be traced 
to a series of papers on Brownian motion and spectral analysis of random processes, which 
began around 1925 and culminated in the publication of the classic paper “Generalized 
Harmonic Analysis” by Norbert Wiener in 1930, and with it the discipline of statistical 
signal processing was established (Khinchin, 1933; Wiener, 1930, 1949; Lange, 1967).

Correlation features just as prominently in adaptive filtering. The correction terms in 
the time-updates of the ubiquitous least-mean-square (LMS) algorithm involve multipli
cation of the underlying estimate error by tap-input signals in a linear combiner (Widrow 
and Hoff, 1960; Widrow and Stearns, 1985). In the course of time, the correction terms 
become proportional to the cross-correlation function between the estimation error and 
tap-input signals.1

Equally interesting is the fact that correlation constitutes a basic mechanism of the 
human brain. Specifically, the brain explores the sensory environment in a multitude of 
ways and uses the information so gathered to control behavior. More specifically, correla
tion is used in the formation of topographic maps, the detection of events in the outside 
world, and the performing of functions such as learning, association, pattern recognition, 
and memory recall (Eggermont, 1990). In particular, correlation theory has been applied 
to model the brain functions (von der Malsburg, 1981), for visual (von der Malsburg, 
1981; Harth et al., 1987) and auditory systems (von der Malsburg and Schneider, 1986; 
Wang and Brown, 1999); and correlated activities are believed to play a critical role in the 
every timescale in the central nervous system: from the short-term experiences of mem

1 Correlation techniques were also dominant in communications and spectral analysis. The autocorre
lation or cross-correlation schemes can be developed as feature detectors (Lange, 1967).
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ory recall, coincidence detection, novelty detection, perception, learning, to the long-term 
evolution, all of which reflect the ubiquitous nature of correlation in human intelligent 
behavior (Cook, 1991).

In what follows, we present a brief survey of correlation-based learning algorithms in 
the literature.2 We argue that correlation is an important concept and a mathematical 
basis in developing statistical learning algorithms.

2.1 T he P ostu la te  o f H ebbian Learning

Correlation-based theories of learning have a long history in psychology and neurobiology 
(James, 1890, Chap. XVI). It has been said that correlation is the brain’s “... main 
mechanism to evaluate, to control, and to learn” and “... the basis of learning, association, 
pattern recognition, and memory recall in the human nervous system” (Eggermont, 1990). 
Undoubtedly the most influential proponent of learning as correlative process was Donald 
Hebb, who postulated that (Hebb, 1949, p. 62):

“When an axon of cell A is near enough to excite a cell B  and repeatedly or 
persistently takes part in firing it, some growth process or metabolic changes 
take place in one or both cells such that A ’s efficiency as one of the cells firing 
B, is increased.”

Stated mathematically, Hebb’s postulate can be formulated as:

A 6U B(t) =  rjxA(t)yB(t), (2.1)

where xA and yB represent the pre- and post-synaptic activities, respectively, between 
the synapse connecting neurons A  and B; A9ab denotes the change of synaptic strength; 
and r] is a small step-size parameter. Namely, the change of the synaptic weight 9AB(t) 
is proportional to the product of xA(t) (input) and yB(t) (output). Averaged over many 
time steps, the synaptic weight becomes proportional to the correlation between pre- and 
post-synaptic firing. The important features of Hebbian rule include (Haykin, 1999):

• time-dependence mechanism;

• local mechanism;

•  associative mechanism; and

• correlational mechanism, for which the Hebbian synapse is often referred to as a 
correlational synapse.

2This part is excerpted and modified from a technical report (Haykin, Chen, and Becker, 2003).
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Supported by subsequent electrophysiological data (Bliss and Lomo, 1973), Hebb’s pro
foundly influential idea has not only withstood the test of time in neurobiological circles, 
but has become the foundation of a wide range of statistical learning theories. A vari
ety of learning algorithms and models, including Oja’s rule for maximum eigenfiltering 
(Oja, 1982), the correlation matrix memory (Willshaw et al., 1969; Anderson, 1969, 1972; 
Nakano, 1972; Kohonen, 1972; Cooper, 1973), Hopfield network (Hopfield, 1982), and 
Boltzmann machine (Hinton and Sejnowski, 1986), were indeed motivated by Hebb’s pos
tulate of learning.

Note that Hebb’s original postulate only allows for an increase in synaptic weight 
between synchronously firing neurons. To prevent unlimited growth, it is necessary to 
extend Hebb’s rule to allow for weight decreases when neurons fire asynchronously. To 
take care of this matter, Sejnowski ( 1977a,b) proposed a covariance-based learning rule:

Ada =  r)(xi -  (xi))(pj -  (yj)) .  (2.2)

The rule dictates that when neurons fire synchronously in a correlated manner, their con
nection strength should increase; whereas when their firing patterns are anti-correlated 
the weights should decrease. Willshaw and Dayan (1990) showed the optimality of the 
covariance rule and similar Hebb-like rules for storing patterns in correlation matrix mem
ories. More recent data on spike-time-dependent plasticity (see Bi and Poo, 2001, for a 
review) has led to computational models that apply a temporally asymmetric time win
dow on Hebbian learning; that is, if a pre-synaptic neuron fires a short time before the 
post-synaptic neuron, positive Hebbian learning occurs, whereas if the post-synaptic neu
ron fires a short time before the pre-synaptic neuron, anti-Hebbian learning occurs (see 
e.g., Gerstner, 2001). This form of learning is, in fact, truer to Hebb’s original postu
late, because it captures the causal relationship that exists between pre-synaptic and 
post-synaptic firing.

2.2 C orrelation as A  M athem atica l B asis for Learn
ing

2.2 .1  E rror-C orrecting L earning R u le

A general and powerful form of correlative learning is the error-correcting LMS learning 
rule (Widrow and Hoff, 1960):

0(t  +  1) =  0(f) +  77x(f)e(t), (2.3)

where e(t) denotes the estimation error e(f) — d(t )—x T(t)0(t), and dit) denotes the desired 
output signal. According to (2.3), the correction term is proportional to the product of the 
tap-input vector x(f) and the estimation error e(f). In the limit as f approaches infinity, 
the correction term approaches the time-average cross-correlation function between x(t)

11

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

and e(t), which, in turn, approaches zero in accordance with the principle of orthogonality, 
whereupon the weight vector 9(t)  converges to the Wiener solution (Haykin, 2002). Thus, 
the LMS rule is similar to Hebbian learning, with the correlation between input and output 
being replaced by the correlation between tap-delay inputs and estimation error. It can 
also be extended to a recursive least-square (RLS) filter by incorporating the computation 
of the time-varying second-order correlation matrix of the tap-delay input signals in the 
learning rule (Haykin, 2002). In addition, although the LMS rule was initially developed 
for operating with a linear neuron, a generalized “delta rule” of (2.3) can be extended 
to nonlinear neurons and multilayer networks using back-propagation (Rumelhart, et. al., 
1986).

2.2 .2  C o m p etitiv e  L earning R u le

Another example of correlative learning is the competitive learning rule, which has either 
a supervised or unsupervised form, as respectively given by (e.g., Kohonen, 2001):

0(t  +  1) =  9(t)  +  r?[x(t) -  0(t)]y(t),  (2.4a)
0(t  +  1) =  6(t) +  r][x(t) -  9(t)], (2.4b)

where where x(i) represents the input vector that is often normalized, ||x(t)|| — 1, and 
y(t) denotes the (bipolar) label of the associated input data, y(t) =  ±1. Equation (2.4a) 
can be decomposed into two terms, the first term r}x.(t)y(t) being a Hebbian term, and 
the second term —rj0(t)y(t) being viewed as a weight decay. When y(t)  =  1, (2.4a) 
reduces to the unsupervised form (2.4b). Note, however, that the unsupervised rule is 
only applied to the neuron that wins the competition (i.e., its output activation function 
equals unity). Hence competitive self-organization can be seen as a Hebbian learning 
with a decay term that guarantees normalization. This property can be interpreted as a 
conservation of metabolic resources, thus the sum of synaptic strengths cannot exceed a 
certain value which is governed by physical characteristics of the cell to support pre- and 
post- synaptic activities.

Competitive learning can also be used for the formation of topographic maps (Will
shaw and von der Malsburg, 1976; Grossberg, 1976; Kohonen, 1984). In a particular form, 
the self-organizing map is formulated as (Kohonen, 2001):

+  !) =  Oj(t) +  ??/ij,i(x)[x(t) -  0j{t)}, (2.5)

where /ij,i(x) is a neighborhood function that defines the “winner-take-aU” region; only the 
winning neuron j  is allowed to update (i.e. excitatory), whereas the others are inhibitory.

2.2 .3  M axim u m  E igenfiltering

Oja. (1982) proposed a self-organizing learning rule that keeps the Euclidean norm of a 
neuron’s incoming weight vector (of dimensionality n) as unity. Specifically, the weight
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feeding the input signal Xj(t) at node j  to produce the output signal yi(t) at node i, is 
updated using the formula

{ E L i  [ Ok i ( t - i )  +  m( t ) * k ( t ) ] 2} i '

which, for a sufficiently small learning-rate parameter rj (0 < rj <  1), can be approximated 
by a simpler rule with a decay term:

Oij{t) =  di:j(t -  1) +  Wj(t)[xi(t) -  Vji^dijit  -  1)]. (2.7)

The learning rule (2.7) has the important property th a t the weight vector converges to the 
predominant eigenvector of the covariance matrix of the input vector, or in other words, 
the first principal component of the input distribution. Oja’s learning rule has been 
further extended to multiple output neurons with orthogonal weight vectors, to extract 
multiple principal components (Oja, 1989; Sanger, 1989).

2 .2 .4  B o ltzm a n n  L earning R u le

Boltzmann machine (Hinton and Sejnowski, 1986; Ackley et al., 1985) uses a contrastive 
Hebbian learning rule, combining a correlative learning term in the “positive” phase 
(clamped state) of learning and an anti-correlative term in the “negative” phase (free 
state):

=  v{{Vi Vj)+ -  (y* %}_)> (2-8)

where ( • ) denotes sample expectation, averaged over a sample of noisy values. In the 
positive phase, the activities of the so-called “visible neurons” are fully constrained by 
the training patterns, whereas in the negative phase, depending on the model, some or 
all of the visible neurons’ states are generated by a constrained sampling procedure.

Further developments in multilayer generative models that can approximate the prob
ability distribution of the data include the Helmholtz machine (Hinton et al., 1995; Dayan 
et al., 1995) and products of experts (PoEs) (Hinton, 2000).

2.2 .5  T em poral D ifferen ce L earning

Reinforcement learning (Sutton and Barto, 1998), another basic form of learning, can 
also be viewed as a correlative learning process. The overall goal is to learn a good 
approximation of a value function, which indicates the expected sum of future rewards, 
where a reward received r  steps into the future is often discounted by an exponential 
factor 7t . In temporal-difference (TD) learning, a special form of reinforcement learning, 
the value prediction error at two successive time steps (so-called TD error) is used to
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update the value function V(t).  The TD learning is analogous to the LMS learning rule 
(2.3) in that the weights are updated in proportion to the correlation between the input 
stimuli and the error in predicting a reinforcement signal (Sutton, 1988):

0(t  + 1) =  0(t) +  r ) [ r ( t+ l )  +  'yV(s(t +  l ) ) - V ( s ( t ) ) } V e V ( s ( t ) )
=  0(t) +  rpc(t)e(t), (2.9)

where x ( i )  =  V qV ( s(t))  is the gradient vector of the linear value function: V( s ( t )) =  
x T(t)Q(t).A The term e(t) is called the TD error, defined by

e( t ) = r ( t  +  l ) + 7 V(t  +  l ) - V ( t ) ,  (2.10)

where 0 < 7 <  1 is the discount factor, and r(t)  denotes the reward. The learning 
rule (2.9) has the effect that when more reward is received than expected (e(t) >  0), 
0  is incremented in proportion to the correlation between unexpected reward (positive 
TD error) and input states; on the other hand, if less reward is received than expected, 
0  is incremented in proportion to the penalty (negative TD error) and input states. 
The neurobiological plausibility of TD learning as an example of classical conditioning 
is discussed in (Sutton and Barto, 1998; Dayan and Abbott, 2001). Specifically, it is 
suggested that the value function V  (t ) provides a plausible mechanism by which animals 
may use prediction to optimize the behavior when rewards are delayed (i.e. the so- 
called temporal credit assignment problem), and explains a wide range of psychological 
and neurobiological data.

2 .2 .6  A n ti-H eb b ian  Learning R ule

The parameter update rules discussed thus far cover a wide range of learning mechanisms, 
starting from self-organizing Hebbian learning, going onto supervised error-correction 
learning, supervised and unsupervised competitive learning, and reinforcement learning. 
Despite the fact that these learning mechanisms originated from entirely different prin
ciples, they all do share the common correlative property in one form or another. In a 
related context, we may identify another class of learning rules that operate by virtue of 
the decorrelative property, examples of which are found in blind source separation and 
independent component analysis (Bell and Sejnowski, 1995; Hyvarinen et al., 2001). In 
particular, for blind source separation,4 the update rule for the demixing matrix, W , in 
the natural gradient form is described by (Amari et al., 1996):

A W (t + 1 )  =  ,[ I  -  M>(y(<))yT(t)]W ((), (2.11)

where * (•)  is a predefined vector-valued activation function, and I denotes an identity 
matrix. Equation (2.11) is essentially a decorrelative learning rule. Specifically, the outer

3In the classic conditioning experiment of animal learning, x(f) can be viewed as a vector of binary 
variables, with each of its components representing the presence or absence of a given stimulus.

4We will revisit this problem in detail in Chapter 3.
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Figure 2.1: Graphical illustration of the correlative learning rule in a one-dimensional 
domain. Left: minimize an objective function. Middle: maximize an objective function. 
Note that the objective function to be minimized/maximized can be also concave/convex. 
Right: the signal-flow graph.

product ' f/ (y(t))yT(t) is the cross-correlation matrix between the output signals y(t )  and 
its nonlinearly transformed version \L(y(f)). After a sufficiently large number of the time 
steps, the correlation matrix approximates the identity matrix, whereupon the incremental 
change in the demixing matrix A W (t-l-l) is reduced to zero and the algorithm converges.

2.3 T he A L O P E X  A lgorithm  and Its V ariants

2.3 .1  H eu ristics

Before presenting a rigorous mathematical derivation, we give some heuristic illustration 
and explanation underlying the development of the ALOPEX procedure.

Without loss of generality, let us consider a one-dimensional example. Suppose that 
the procedure is to minimize or maximize an objective function E (w ), where w is the 
parameter to be optimized; according to the definition, the gradient of E(w)  is given by:

dE(w)  E(w +  5w) -  E(w) SE _  A E
—t  — lim ----------- -------------- — hm —— ~  —— ,

OW Sw->0 OW 5iv—>Q OW A w

where the approximation is valid when A w  is sufficiently small and therefore approximates 
the infinitesimal perturbation 5w.h Note that the algebraic sign of gradient remains 
unchanged if we substitute A E / A w  with the product form A w A E f  the approximation

5This is known as the finite forward-difference approximation in optimization theory (Fletcher, 2000). 
Although in principle one can replace the “forwaxd-difference” with “central-difference”:

dE {w )  _  E (w  +  6w) -  E (w  -  6w) , .
dw  2 Sw

for more appealing approximation accuracy; the “forward-difference” approximation is simpler from the 
implementation perspective.

6Alternatively, A w A E  can be replaced by its average value (AtnA£7).
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can be easily justified from a geometrical picture illustrated in Figure 2.1. When the 
unknown parameter is multidimensional (i.e., the scalar w is replaced by a vector 0 ), 
purely using AO AE  as a gradient estimate merely permits a fixed (positive or negative) 
search direction for each element;' in order to circumvent this limitation, we need to 
introduce the noise to allow multidimensional search. How to control the amount of the 
noise is the key of the ALOPEX procedure. In the sequel, we will discuss this issue in 
detail and summarize the appealing features of the algorithm at the end of the chapter.

2.3 .2  M ath em atica l D erivation

By analogy to the correlative form of Hebbian learning, we will derive a simple correlative 
form of learning rule. We do so by relating an incremental continuous-time perturba
tion in the weight vector, 50, to the correlation between a discrete-time change in the 
weight vector, A 0, and the corresponding incremental continuous-time perturbation in 
the objective function 5E  =  E (0  +  AO) — E{0),  defined as (Fujita, 1993):

5 0 o c ( A 0 , 5 E ) ,  (2.12)

where the time-average operator (x , y)  accounts for temporally local correlations between 
two variables x and y. Moreover, invoking the first-order Taylor series, we may approx
imate 5E due to discrete-time changes in the individual elements of the A-dimensional 
weight vector 0  as

c r p  d E

j= i J
Adj.

Correspondingly, we may write

j =i J
(AOi, AOj), i =  !,■■■ ,N.  (2.13)

Assuming that the Euclidean norm ||A0|| <  1 and that individual element changes A0* 
(i =  1, • • • , N)  are independent of each other (in time average), we may approximate the 
cross-correlation term in the right-hand-side of (2.13) as

(Adi, AOj) rjAdfSij, 

where y is a small-valued positive constant, and

3 \  1, 1 =  3

7Note that the multiplication of a vector with a scalar does not change the direction of the vector.
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is the Kronecker delta. Accordingly, we may further approximate (2.13) as

A 6j<A6t,SE)  *
0

~  r]AEA9i, i =

In vector form, we thus have the compact relation

A 6 ( t  +  1) oc rjA6(t )AE(t) ,  (2-14)

where

A 0 ( t )  =  O ( t ) - 0 ( t -  1), (2.15)
A E(t) =  E ( t ) - E ( t -  1). (2.16)

Stated in words, the correction in the update formula (2.14) is proportional to the in
stantaneous cross-correlation between the weight modification A 6{t)  in two consecutive 
time steps and the corresponding objective function change A E(t),  where the algebraic 
sign in the right-hand-side of (2.14) depends on the form of the objective function to be 
maximized or minimized. The algorithm for weight changes given by (2.14) forms the 
basis for the ALOPEX algorithm as discussed below, which also incorporates a stochastic
decision rule for determining the direction of weight change.

2.3 .3  T h e A L O P E X  A lgorith m

There exist several forms of the ALOPEX algorithm. A popular form of the algorithm 
developed for neural network training (Unnikrishnan and Venugopal, 1994) is summarized 
below:

*t+i =  ** +  »&, (2-17)

where r] is the learning-rate parameter. The vector £t is a random vector with its j th
entry determined element-wise by

£j(t) =  sgn( u j - p j i t ) ) ,  U j ~ U ( 0, 1), (2.18)

p , ( t )  =  <j>(Cj(t)/T(t)) =  1 +  exp(_ 1C j( ( ) /r ( ( ) ) ' <2-19)

Cj(t) =  A6j( t )AE(t ) ,  (2.20)

where u is a uniformly distributed random variable; sgn(-) is the signum function; and 
4>{’) is the logistic sigmoid function. The key term is Cj ( t ) ,  which correlates changes in 
the cost function with parameter vector changes; it is the scalar version of (2.14). The 
T(t)  is a time-varying annealing parameter that plays a similar role to “temperature” in 
simulated annealing:

T(t) =  (2.21)
J-o
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where T0 >  1 is an integer. The algorithm starts with a randomly initialized parameter 
0 q and stops when the cost function E(t)  is sufficiently small. The stochastic component 
£f, being a random force with certain acceptance probability, is included to help the 
algorithm escape from local minima.

2 .3 .4  T h e A L O P E X -B  A lgorith m

Recently, Bia (2001) has developed a quasi-deterministic version of the ALOPEX algo
rithm, which he called ALOPEX-B. Unlike the ALOPEX described in (2.17) through 
(2.21), ALOPEX-B does not employ any annealing scheme and uses fewer parameters, 
with reported simpler implementation and faster convergence. Consistent with the pre-

e t+1

algorithm proceeds as follows:

Ot + (2.22)
sgrif-u, 1), (2.23)

m < A )> (2.24)
sgn(A9j(t))AE(t) (9 9^

E L 2A ( A - l ) t- fe|A E ( / c - l ) | ’
Cj(t) =

where 0 < A < 1 is a forgetting parameter. An optimal forgetting parameter is often 
problem-specific, a common value is often chosen within the range [0.35,0.7].

2.3 .5  A n  Im proved V ersion  o f th e  A L O P E X  A lgorith m

In the course of pragmatic experiments performed on the two versions of the ALOPEX 
algorithm discussed above, we have formulated an improved version of the ALOPEX 
algorithm in terms of convergence behavior. As a result of these experiments, we have 
found that it is more efficient to combine (2.22) and (2.14) in a hybrid learning form, 
which leads to the modified ALOPEX-B algorithm:

0 t+l =  0 t +  rj£t +  j A 0 tAE(t ) ,  (2.26)

where 7 is a step-size parameter, corresponds to the same stochastic term in (2.22) 
without invoking the temperature annealing, and A 0 tAE( t )  corresponds to the product 
term on the right-hand-side of (2.14). The motivation for inclusion of the noise term 
is to introduce a small amount of randomness in the direction of weight change, thereby 
helping the algorithm escape from local minima. Our extensive experiments have con
firmed that (2.26) often converges faster than (2.22) or (2.14) working alone.

The modified ALOPEX-B algorithm has two types of correlation:

•  The first kind of correlation takes a form of instantaneous cross-correlation described 
by the product term A 0 tAE(t) .
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•  The second kind of correlation appears in the computation of as in (2.22) through 
(2.24), which determines the acceptance probability of random perturbation force 
€*■

We note that when the term takes a simplified form of noise, (2.26) reduces to the 
special form described in (Tzanakou, 2000):

6t+1 =  0t  +  t ]A0tAE(t)  +  Ut, (2.27)

where u t is a Gaussian noise vector. The additive noise term u t differs from in that it 
ignores the correlation information that is used to determine the noise amount in either 
(2.19) and (2.20) or (2.24) and (2.25).

It is noteworthy that the original ALOPEX algorithm (Harth and Tzanakou, 1974; 
Tzanakou et al., 1979) assumes that the objective function is to be maximized. If, however, 
the goal is to minimize E(t),  then the algebraic sign of the cross-correlation product term 
in (2.26) and (2.27) should be changed to the minus sign.

2.3 .6  T w o-T im esca le  A L O P E X

Lately, Sastry et, al. (2002) proposed a two-timescale version of ALOPEX algorithm, which 
they called 2t-ALOPEX. The key feature of the 2t-ALOPEX is to recursively update the 
acceptance probability p3 (t):

Pj(t) =  (1 -  -  1) +  ACj(t), (2.28)

where

0 (t )  =  0 ( ^ ( t  -  l ) m )  ~  ^ - l ) ) , (2.29)

and <j>(-) is the logistic sigmoid function. The motivation of this modification (to the 
ALOPEX procedure described in Section 2.3.3) is to force the heuristic idea via an ap
proximation of the first-order Taylor series, which is also amenable for theoretical analysis.

2 .3 .7  O ther T y p es o f  C orrela tion  M ech an ism s

•  Time-averaged correlation:

9j(t  +  1) =  9j(t) +  pfRjit) +  Uj, (2.30)
Rji t )  =  \ R j ( t  — 1) +  AE( t )A9j ( t ) ,  (2.31)

where the instantaneous correlation is substituted by a window-averaged correlation 
estimate. Note that by this change, the current parameter is influenced by the errors 
in previous steps (i.e., penalizing previous trajectories), the learning rule is forced 
to search a locally smooth solution in the parameter space.
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•  Inverse correlation:

9j(t +  1) =  9j(t) +  'yAE(t ) /A9j (t) +  Uj, (2.32)

where the instantaneous value AE(t )  /  A9j(t)  replaces its local (time or spatial) 
average. The inverse correlation, however, has the disadvantage that the crosstalk 
noise increases as A 9j(t) becomes small in comparison with AE(t ) ,  since AE(t )  
might include the change caused by other k ^  j  (Fujita, 1993). In addition,
the inverse correlation often suffers from a poor numerical problem in practice: if 
A 9j(t) is very small, it can cause an overflow problem in computer simulations.

• Gain-and-loss discriminated correlation (Fujita, 1993):

which is a form of either gain-emphasized correlation (when A E(t) <  0) or loss- 
suppressed correlation (when A E(t)  > 0): When A 9j gives rise to a gain (A E(t) <  
0), A E(t)  is multiplied by A 9j(t), the gain is further used to bring in a bigger 
change of 9j, thus a lower potential of E  at a farther point is an attractor; when 
A 9j results in a loss (AE(t) >  0), A E(t)  is divided by A9j(t),  the loss moves 9j 
according to the local gradient. The motivation of such discriminated correlations 
is to change the parameters via the attractive force of the global minimum and the 
repulsive force of the local gradient (Fujita, 1993).

2.4 Sum m ary

Thus far, we have discussed several different versions of the ALOPEX. Although distinct 
from each other, they do share many common attractive features, as summarized below:

•  The ALOPEX optimization procedure is gradient-free, and is independent of the 
objective function and network (model) architecture.

•  The optimization is synchronous in the sense that all parameters are updated in 
parallel, thereby sharing the features of algorithmic simplicity and ease of hardware 
(parallel) implementation.

• The optimization relies on noise, which is used to control the search direction and 
escape from the local minimum or maximum.

• The basic principle of ALOPEX is a trial-and-error process; it is similar in spirit to 
the “weight perturbation” method (a.k.a. “MIT rule”) in the control literature.

• Synaptic plasticity introduces a feedback mechanism; it is temporally asymmetric 
and characterizes a reinforcement-reward like casuality, which establishes itself as a 
similar form of the temporal-difference (TD) learning.

9j(t) +  'yAE(t)A9j(t) +  Uj, if AE( t )  <  0 
9j(t) +  ryAE(t ) /A9j ( t )  +  Uj, if A E(t) >  0 (2.33)
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Chapter 3

Perceptual Learning for 
Figure-Ground Segregation in 
Sensory Perception

“What we see is the solution to a computational problem, our brains compute the most
likely causes from the photon absorptions within our eyes. ”

— H. Helmholtz

3.1 Perception: Learning C yclopean Sensory D ata

Learning cyclopean sensory information provides a human the main sources of the sur
rounding real-life world. Among many, segregation and streaming are important tasks 
for sensory perception in visual and auditory systems. How to understand and imitate 
the brain’s amazing capability to segregate a perceptual object of interest in a complex 
visual or auditory scene, nevertheless, remains a major challenge. Sensory perception is 
often viewed as an unsupervised learning problem in computational neuroscience (Harth, 
1976; Harth et al., 1986; Hinton and Sejnowski, 1983). Biologically speaking, the process 
of synapse adaptation is called learning, and the procedure for adjusting the synapse is 
referred to as the learning rule. In mathematical terms, learning is an optimization pro
cess in that we need to design a procedure to find an optimal solution that achieves a 
minimum or maximum value of a specified objective function. Bearing in mind the hu
man’s remarkable perception ability, we may infer that perception should not cast itself 
as an NP-hard optimization problem. To understand how the brain efficiently solves such 
optimization problems is of theoretical and technical importance. This conundrum, de
spite many efforts, is still profoundly mysterious and elusive. It is our firm belief that the 
candidate learning rule to the solutions of the self-organized perceptual tasks should be 
simple, robust, universal, biologically plausible, and amenable for parallel and distributed
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computation, as we have observed from its biological counterpart in the brain.

In a neurobiological context, the idea of correlation-based learning was formally es
tablished by Hebb (1949). As reviewed in Chapter 1, Hebbian-like learning is temporally 
local since it only depends on pre- and postsynaptic firing rates and present state of the 
synapse (namely, the information that is locally available at the location of the synapse). 
Correlative learning can be viewed as a special case of the Hebbian rule, depending on 
different interpretations of pre- and postsynaptic activities. In the computational neu
roscience and connnectionist literature, correlation theory has found its great successes 
in associative memory (see e.g., Anderson, 1972; Kohonen, 1972; Hopfield, 1982), vision 
(see e.g., von der Malsburg, 1981; Miller, 1990, 1998), audition (Eggermont, 1993), novelty 
detection and learning (Eggermont, 1990; Singer, 1993; Arbib, 2003), and sensory segmen
tation (see e.g., von der Malsburg and Schneider, 1986; von der Malsburg, 1999; Konig 
and Engel, 1995). It has also been argued (Cook, 1991) that the correlated activities play 
a significant role in the central nervous system on every time scale.

In this chapter (and the chapter that follows), we will study perceptual learning in 
visual and auditory systems, using the developed stochastic correlative learning algorithm. 
Specifically, in the current chapter, we look at an important perceptual phenomenon, the 
so-called figure-ground segregation; experimental results on various perceptual tasks and 
discussions will be presented in detail.

3.2 F igure-G round Segregation

The perception goal in figure-ground segregation is to discriminate a “figure” (the object 
of interest) from a “ground” (the background), given some sensory stimuli (i.e. the au
ditory or visual scene). The “figure” and “ground” are relative concepts in a sense that 
their positions can be switched by selective attention. In certain scenarios, “figure” is 
obvious and it often pops out from the background; sometimes, “figure” and “ground” 
are ambiguous and bistable (for instance, a famous example is Rubin’s vase-face illu
sion). Numerous psychophysical effects, such as boundary, size, orientation, contrast, 
symmetry, convexity, and meaningfulness, influence the figure-ground organization and 
perception. In the literature many computational models have been proposed for various 
figure-ground segregation tasks (e.g., Kienker et al., 1986; Sejnowski and Hinton, 1987; 
Sporns et al., 1991; Grossberg and Wyse, 1991, 1992; Herault and Horaud, 1993). Here, 
we have focused the attention on stereo observations in sensory perception tasks. Note 
that, however, figure-ground segregation is by no means limited by binocular or binaural 
observations; instead, monocular or monaural input is sufficient for many figure-ground 
discrimination tasks.

In the subsequent chapter, we illustrate that a simple stochastic correlative learning 
rule, as a variant form of the ALOPEX (Harth and Tzanakou, 1974; Tzanakou et al., 
1979), is sufficient to accomplish several classic figure-ground segregation and perceptual 
vision tasks. Though not being its debut, we do demonstrate, for the first time, some
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novel applications of this learning rule for solving several unsupervised learning problems. 
The effort for attacking these problems is not the first trial, but we present some fresh 
thinking regarding individual perceptual problems and produce the solutions in a rather 
different way (compared to available computational modeling approaches).

3.2 .1  S to ch a stic  C orrelative L earning R ule

Let w  denote a vector of synaptic weights or some unknown parameters, and let E (w) 
(abbreviated as E  from now on) denote a predefined objective function related to w. The 
proposed stochastic correlative learning rule, as a variant of the ALOPEX discussed in 
Chapter 2, is rewritten here:

w t+i =  w t ±  rjAwtA E t +  7rt, (3.1)

where A w t =  w t — w t_i, A Et — Et — Et~\, r is an additive random noise vector,1 r) is a 
learning rate scalar, and 7 is another scalar that controls the amount of additive noise. 
Equation (3.1) states that the current synaptic adaptation A w t+1 depends on the instan
taneous cross-correlation term A w tA Et, a product of previous synaptic modulation and 
the resulting performance error change. The algebraic (positive or negative) sign depends 
on the form of the objective function to be maximized or minimized.2 The main role of 
the noise is to introduce randomness into the optimization process to help to escape local 
maxima or minima. Sharing with many other stochastic optimization procedures such as 
stochastic relaxation (Ballard et al., 1983) and simulated annealing (Kirkpatrick et al., 
1983; Geman and Geman, 1984), an interesting aspect of this correlative learning rule is 
that it relies heavily on the effect of noise. We have observed that the influence of the 
noise is critical to the optimization process in all of tasks reported later. We regard this 
effect as a putative role for high degree of stochastic variability in the firing pattern of 
neurons in the sensory cortices (Sejnowski and Hinton, 1987). Equation (3.1) character
izes a temporally asymmetric synaptic plasticity and a reinforcement-reward like causality 
(in the sense that the action A w  yields either a reward or penalty measured by A E). In 
fact, it establishes a trial-and-error relationship. In addition, the freedom of designing 
an objective function E  allows much space to incorporate the higher-order correlation 
between stimulus and the unknown parameters via the cross-correlation term A w tA Et . 
Another intriguing feature of (3.1) is that it is gradient-free and model-independent, thus 
being potentially applicable for various postulated neural architectures that have modu
lar, hierarchical, or feedback structure. This is even more appealing when it is expensive 
or impossible to calculate the exact gradient of the objective function (especially those in
volving second- and higher-order statistics), or the objective function is non-differentiable 
(due to some discontinuity) or non-convex. Besides, the learning rule (3.1) inherently in
corporates a feedback mechanism (recalling Figure 2.1). From a practical implementation

1In our experiments reported here it is chosen to be uniformly distributed; however, it can be specifi
cally designed to accelerate the optimization process, as discussed earlier in Chapter 2.

2Mathematically, minimizing an objective function E  is functionally equivalent to maximizing its 
negative value, —E.
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viewpoint, the simplicity of (3.1) readily lends itself to parallel optimization and possible 
VLSI implementation.

Here, E  is a global function with respect to the weight vector w. The synaptic 
plasticity with a global function might seem biologically implausible (Becker, 1995).3 
However, E  can also be regarded as a local E  contributed partially by the local w. 
For instance, E  can be measured by the number of firing spikes of the cells; or E  can 
be a certain reward signal released by chemical substance that is induced by a top-down 
projection of cognition message (either success or failure). In general, synapses at different 
locations of the cortex can be associated with different costs, and the learning rule is 
readily extended to multiple objective functions case. Equation (3.1) characterizes a 
synaptic plasticity of “think globally, act locally and synchronously.

It is noteworthy to emphasize the causal synaptic plasticity of (3.1) induced by a 
Hebbian term. The correlative mechanism reinforces individual pre- and postsynaptic 
activities to strengthen or attenuate the synapses. Another way to view it is to think the 
neuron as a coincidence detector, a combination of presynaptic events (Awj) leads to a 
common postsynaptic action potential (A E), namely, coincident spiking. This perspective 
is in contrast to the conventional view of an integrate-and-fire neuron, as noticed by a 
number of researchers (Singer, 1993; Shadlen and Newsome, 1994; Konig and Engel, 1995; 
Konig et al., 1996).

3.2 .2  P a ttern  E xtraction

Pattern extraction is an important task in unsupervised learning. ALOPEX (ALgorithm 
Of Pattern Extraction), as its name suggests, is a procedure designed for (visual) pattern 
extraction (Harth and Tzanakou, 1974; Tzanakou et al., 1979). In perceptual learning, a 
central task is to extract the interesting (often non-Gaussian) features behind the high
dimensional sensory data. In its original appearance, ALOPEX was developed for visual 
research, in which the response feedback was used to construct visual patterns that op
timize the neurons’ responses. The underlying assumption in the ALOPEX process is 
that, apart from noise fluctuations, the response of a neuron in the visual pathway in
creases as the stimulus approaches some optimal pattern, or the so-called receptive field.4 
It was also suggested (Harth and Tzanakou, 1974) that in principle, any visual event 
or sequence of events displayed on the retina may be the receptive field of a neuron (or 
population of neurons), and that such neurons function as detectors of the specific sen
sory trigger features defined by their receptive fields. In particular, when the detectors’ 
generated patterns (starting with a random pattern) match the receptive field (i.e., they 
are highly correlated), the cell is likely to produce a high response (i.e., high firing rate). 
The ALOPEX process takes the feedback of the neurons’ responses (monitored by mi

3It is often difficult, but not impossible, to transform a learning rule driven by a global objective 
function to a purely local learning rule (see Linsker, 1997; Xie and Seung, 2003, for special examples).

4In (Harth and Tzanakou, 1974), the authors defined the receptive field as that spatio-temporal 
stimulus pattern, which maximally affects the firing rate of a given neuron.
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croelectrodes) and further optimizes its produced patterns, until the correlations between 
the ALOPEX patterns and the receptive field patterns are very high; by then a coinci
dent detection is accomplished. Such a trial-and-error stimulus pattern-matching process 
essentially reflects the key idea of feedback in cybernetics (Wiener, 1948). The concept of 
the coincident/cor relation detector is also widely used in communications and auditory 
perception, as reviewed in (Lange, 1967).

In addition, being a generic stochastic optimization procedure, it is not surprising 
that the ALOPEX has also found numerous unique applications in modeling perceptual 
systems (e.g., Tzanakou, 2000; Anderson and Tzanakou, 2002). As a matter of fact, the 
ALOPEX process (used as an optimization procedure) was also suggested to play a critical 
role in the thalamus via the thalamocortical (feedforward) and corticothalamic (feedback) 
loops (Harth et al., 1987; Mumford, 1995).

3 .2 .3  O b jectiv e  F un ction

If we view perception as an unsupervised learning process, designing a suitable objec
tive function (that is often a global measure) is deemed to be crucial to the percep
tion. Information theory provides a good guide for sensory perception. In the literature, 
information-theoretic criteria have been suggested for various kinds of unsupervised learn
ing (e.g., Barlow, 1989; Linsker, 1990; Becker and Hinton, 1992; Atick, 1992; Intrator, 
1992; Blais et al., 1998). Among many, independence component analysis, or ICA (see 
e.g., Bell and Sejnowski, 1995; Haykin, 2000; Hyvarinen et al., 2001), is an important class 
of unsupervised learning for source separation and feature extraction. In a conventional 
batch learning setup, let S denote a source matrix that contains the original signals, in 
which each source is represented by a row vector. The sensors receive the signals subject 
to a linear mixing process described by X  =  A S, where A  is called the mixing matrix 
(usually, A  is a square matrix with a full rank). The recovered signals are written in a 
matrix form Y  =  W X , where W  is called the demixing matrix. The goal of ICA is to 
separate out the sources, given one or more of the ensuing assumptions about the sources: 
(i) non-Gaussian; (ii) statistically independent or uncorrelated; and (iii) non-stationary. 
In terms of objective function, there are many criteria for ICA, such as the maximum en
tropy (Infomax), maximum likelihood, maximum a posteriori, and higher-order cumulant. 
Most of them attempt to search for the extreme of the contrast function (e.g., kurtosis); 
see (Hyvarinen et al., 2001) for more discussion. We briefly mention a few of them below.

K u r to s is  s ta t is t ic s .  Assuming that the source signals are non-Gaussian (leptokurtic 
or platykurtic), a common measure for non-Gaussianity is the minimum or maximum 
kurtosis criterion (Hyvarinen et al., 2001). The kurtosis function, being a higher-order 
statistic, has previously been used for feature extraction (e.g., Blais et ah, 1998). In 
the literature, the kurtosis-based ICA approaches include the kurtosis-based gradient
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adaptation rule (Girolami and Fyfe, 1997; Hyvarinen et al., 2001):

A w  oc sign(A:'urt(w'r z ) )  ( z ( w r z )3), 

w  <— w / | |w | | ,

where z is the whitened data from x, and hurt represents a kurtosis function (a.k.a. the 
fourth-order cumulant) defined as

kurt(z)  =  (z4) — 3((z2))2

with ( • ) denoting the sample average; random variable z is assumed to be zero-mean. 
One can also derive the kurtosis-based fixed-point FastICA algorithm (Hyvarinen and 
Oja, 1997; Hyvarinen et al., 2001).

In the literature, it has been suggested to use the normalized kurtosis function for 
source separation or feature extraction (Girolami and Fyfe, 1997; Blais et al., 1998):

( zA)
kurt(z) =  — ——t; — 3.

«ri)2
Specifically, we can maximize the absolute value of the kurtosis of the output signals by 
assuming that the recovered “figure” has a nonzero-mean non-Gaussian feature:5

E = ((y* (y»))4) _  3 
«y?> -  <yi>2)2

(3.2)

where y* denotes the ith output vector, and n denotes the number of sensors. Note that in 
using the proposed learning rule (3.1), we make no assumption regarding the distributions 
of the sources; in general, the distributions can be super- or sub-Gaussian or a mixture 
of both.6

N eg en tro p y . Assuming that the sources are non-Gaussian, a natural objective criterion 
is to maximize the discrepancy of transformed outputs from the normality (Comon, 1994). 
In particular, we can maximize the sum of marginal negentropies:

n

£  = X > (  Yi), (3-3)
t= 1

5Exploration projection pursuit theory (Freidman, 1987) states that search for the interesting structure 
in data space can be achieved by searching for the deviation from the Gaussian distribution in the 
projected space. Here, we assume that the kurtosis of Gaussian, super-Gaussian, and sub-Gaussian 
signals are equal, greater, and smaller than 3, respectively.

6Also note that optimizing equation (3.2) has a tendency to produce duplicate sources at the outputs, 
unless an extra (independent or uncorrelated) constraint is imposed between the different outputs y * and 
yj
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where J(yi)  represents the negentropy of the ith output vector y {; the negentropy function 
can be roughly approximated by (Hyvarinen et al., 2001):

J (y*) ~  ^ ( y <>2 + 1gk u rt(y i?■ (3.4)

Note that the second-term of the right-hand-side of (3.4) consists of the squared kurtosis, 
thus maximizing the sum of marginal negentropies (3.3) has a similar effect as maximizing 
the absolute value of the kurtosis function as in (3.2).

M u tu a l in fo rm a tio n .  Assuming that the source signals have zero mean and are sta
tistically independent, one can also use the minimum mutual information (MMI) criterion 
(Comon, 1994; Amari et ah, 1996; Yang and Amari, 1997) to minimize the dependency 
among the outputs. This is equivalent to minimizing the Kullback-Leibler (KL) divergence 
between the joint and the product of the marginal distributions of the output components:

D ( W ;y ) =  y „ ( y )lo g n 0 i _ dy

n

= - m  y) + X > M -

where y  =  [y i,• • • , yn]T denotes a vector output; n  denotes the number of the sensors;
H (y) denotes the joint entropy of the outputs, and H(yi)  denotes the marginal entropy
of the zth output. From y  =  W x , it follows that (Cover and Thomas, 1991):

tf(y )  =  i 7 ( x )  +  log |d et(W )|, (3.5)

where det(W ) denotes the determinant of the square matrix W ,7 and 77(x) denotes the 
entropy of x  that is independent of W .

Since the Pi(yi) are often unknown, we may use the Gram-Charlier expansion to 
approximate the marginal probability density and the associated marginal entropy 77(yi); 
in doing so, the mutual information can be rewritten as (Amari et al., 1996):

77,

D { W ;y ) «  —if (x )  — log | det(W )| +  — log(27re)
Z

+  (3.6)
11

- n 12 48 8 ’ 16
1 = 1

where and denote the third and fourth order cumulants of y*.8 In practice, we 
often use sample statistics to approximate k3̂  and the first and the third terms of 
the right-hand-side of (3.6) are constants that are irrelevant to the optimization.

7If W  is a non-square (degenerate) mixing matrix, H (y) =  H (x) -l-log y  det(W W T); more generally, 
if y  =  f(W x), then H (y) =  — f  dxp(x)  log where J =  J(x) =  ^  is the Jacobian matrix.

d e t(J J  }
8For a zero-mean random variable x, the first four cumulants are n\ = 0, « 2  = E[x2], K3 = E[x3], and 

« 4  =  E[x4] — 3(E[x2])2; for general definitions, refer to (Hyvarinen et al., 2001).
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In what follows, we will apply the kurtosis objective function (3.2) for perceptual 
learning in three figure-ground segregation tasks, in which we are mainly concerned with 
sensory feature extraction (given two sensors) rather than source separation (though the 
problem formulation is motivated from ICA). Our motivation and contribution here, how
ever, is substantially different from the available kurtosis maximization/minimization- 
based approaches in the ICA or blind separation literature (e.g., Girolami and Fyfe, 1997; 
Hyvarinen and Oja, 1997; Cardoso, 1998; Hyvariiion et. al., 2001), where they are often 
the gradient-driven optimization procedures for square-mixing source separation; rather, 
we are interested in extracting the coherent (non-Gaussian) features from the binocular 
or binaural observations available from the normal human being.

In implementing the ALOPEX algorithm, there are two particular issues that need 
to be considered: a stopping rule for terminating the computation, and a criterion for 
assessing the quality of the outputs provided by the algorithm. In all the applications of 
the ALOPEX algorithm that are pursued in this chapter, we have followed the ensuring 
procedures:

•  Based on experimentation, a number of iterations is determined for terminating the 
computation.

•  Visual inspection of the pictures or waveforms, pertaining to the experiment in 
question, was used to assess the quality of the algorithm’s outputs.

It is recognized that these two procedures are rather ad hoc in nature. Nevertheless, for 
the purpose of this thesis, they are considered to be adequate.

3.2 .4  B inocu lar Fusion o f  S tereo  Im ages

The spatial difference between two stereo images seen by the two eyes is called binocular 
disparity, which is an important cue for depth perception in stereovision (Julesz, 1971).9 
The computation of disparity often requires correct identification of corresponding features 
in the stereo images, hence it is essentially a correspondence problem. Here, we first 
consider a classic disparity perception task in the random-dot stereogram (Julesz, 1960, 
1971). As shown in Figure 3.1, when the stereo images are presented to the eyes, the 
binocular fusion gives the percept of a central square floating in depth in front of the 
surround; although the object of the square does not physically exist in each image. 
The stereovision assumes that the eyes observe two slightly different scenes, and the 
depth perception is accomplished by detecting disparity of the object in the retinae. The 
first computational solution of stereo disparity was found by Marr and Poggio using a 
cooperative algorithm (Marr and Poggio, 1976; Marr et al., 1978). Other computational 
paradigms have also been proposed (e.g., Qian and Sejnowski, 1989; Qian, 1994). Here we

9The other cues such as the color, brightness, shading, or motion, can also help depth perception even 
with monocular vision.
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Figure 3.1: (A) Two 128 x 128 pixel random-dot stereograms used as input by analogy 
to stereovision. (B) The produced outputs after 5 iterations of learning rule (3.1); the 
squares appear detected floating above the grounds. (C) The functional wiring diagram, 
where the circles represent the populations of cells; modified from (Eggermont, 1990, Fig. 
8.3, p. 153).

show that the simple stochastic correlative rule (3.1) can solve this stereo correspondence 
problem via a novel cooperative computation. We regard the two stereograms as the 
observations received in the retinae. The perception of the object hidden in the scenes 
is subject to a noisy ground interference. Imagine the disparity perception as a figure- 
ground segregation problem. The figure (the square in Figure 3.1 A) and the ground (the 
random dots) are assumed to be two independent objects mixed in the scenes, which 
correspond to the the stereogram. Moreover, imagine the two-dimensional images as 
two one-dimensional signals located in a manifold coordinate. In particular, two two- 
dimensional images are vectorized into two one-dimensional vectors and then grouped into 
a 2 x 1282 matrix X . The left and right stereograms (after vectorization) are regarded 
as two mixing signal vectors x i and X2. Visual perception is intended to find a demixing 
matrix W , in an optimal way, to segregate the object. Namely, the resulting signals Y  =  
W X  should be more easily perceived. Using (3.2) as an objective function, the adaption 
of W  follows (3.1), where the initial parameter setup is: rj =  0.1,7 =  0.01, W  =  I (where 
I is an identity matrix). Without exception, the algorithm has constantly succeeded in 
detecting the “figure” within 10 iterations (Figures 3.1 and 3.2). Interestingly, as the 
learning process go on, the cross-correlation coefficient between the left and right images 
increases, starting from an initial value of 0.74 between Xj and x 2 (Figure 3.1A) and
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Figure 3.2: Another two experiments on binocular fusion of stereo images. In the first 
example, the “figure” appears as a circle; in the second example, the “figure” appears as 
a “2”.

finishing at a value of 0.99 between y i and y 2 (Figure 3. IB) after 200 iterations,10 whereas 
the kurtosis discrepancy increases from 0 to 0.01, suggesting higher-order statistics play 
a critical role in visual perception (Field, 1994; Olshausen and Field, 1996). In addition, 
changing the level of disparity does not affect our algorithmic performance, but it would 
influence the correlation statistic between the two stereo images.

We envision a functional wiring diagram (Figure 3.1C) for this stereo fusion task. The 
retinal cells receive the binocular stimuli projected from two eyes and pass to the lateral 
geniculate nucleus (LGN). The LGN cells relay the responses, through excitatory or in
hibitory connections, to visual cortex. The correlative rule is carried iteratively via the 
thalamocortical (feedforward) and corticothalamic (feedback) loops (Harth et al., 1987; 
Mumford, 1995) to modify the connections. The success of (3.1) for the stereo fusion prob
lem confirms the importance of synchrony or correlation between the visual cortex, LGN, 
and retinal cells, supported by numerous neurophysiological evidence (Eggermont, 1990; 
Miller, 1990; Singer, 1993; Konig and Engel, 1995; Alonso et al., 1996). The suggested 
correlative mechanism of synaptic plasticity between geniculocortical neurons and cortical 
cells provides a model for developing binocular disparity, as well as a new cooperative way 
for discovering depth.

The same principle can also be extended to the random-line stereograms (Julesz and 
Spivack, 1967; Julesz, 1971; Nishihara and Poggio, 1982). Figure 3.3 illustrates one ex
ample of a random-line stereogram and its associated stereo fusion results obtained from 
the learning rule (3.1). As expected, the learning rule also succeeds in finding the correct 
solution.

10Note that this does not mean the actual duration for detecting the transition from uncorrelated 
to correlated scenes; the neural mechanism behind the binocular fusion and rivalry processes is more 
sophisticated (Julesz and Tyler, 1976).

30

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

Figure 3.3: Top row: two 200 x 200 pixel random-line stereograms. Bottom row: the 
outputs produced by the algorithm after 10 iterations of correlative learning rule.

3.2 .5  P ercep tu a l G rouping

The second vision perception task is a motion perception problem. The principle of com
mon fate is a perceptual grouping process demonstrated in a visual illusion experiment 
designed by Gestalt psychologists (e.g., Koffka, 1969; Rock and Palmer, 1990). We de
signed a sequence of frames that contain binary random-dot patterns. Given an individual 
static frame image, there is no cue for people to perceive an object in it. However, when 
the frames are played sequentially as in a movie,11 we can readily perceive a moving 
disk-shaped object bouncing from left to right horizontally due to the so-called Gestalt 
common-fate grouping effect. Obviously, the frame-to-frame displacement of a group of 
dots is of sufficient disparity to enable us to group the dots into a moving object. Here we 
regard this perceptual grouping task as a figure-ground segregation problem. To illustrate 
this, we pick four pairs of consecutive frames (Figure 3.4a) from the movie that contains 
66 frames in total. We view the consecutive two frames as two stereo observations, which 
are slightly different and highly correlated. Given a pair of consecutive frame images, 
we regard them as two mixing signal vectors Xi and x 2 after image vectorization. Using 
(3.2) as an objective function, we run the same learning procedure as in the binocular 
fusion task and observe the results. Interestingly, the correlative learning rule discovers 
the shape of the object as an obviously blank area (Figure 3.4b), which also indicates the 
corresponding position of the illusory object in the frame. This paradigm can be seen 
as a new cooperative computation of coherent visual (unstructured) motion perception

n The common fate phenomenon movie was kindly provided by Dave Landrigan. The video clip is 
made available at my website: http://soma.crl.mcmaster.ca/~zhechen/download/motion-percept.mov.
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Figure 3.4: The common fate phenomenon and Gestalt grouping, (a) Top row: the 
selected 4 frames from a movie containing 66 frames, the legend numbers indicate their 
location. Each frame is a 240 x 320 pixel image. The frame-to-frame displacement of a 
group of dots is of sufficient disparity to enable us to group the dots into a moving object,
(b) Bottom row: the selected outputs produced by the algorithm at different stages, each 
after 500 iterations of learning rule (3.1). Each resulting frame produces a clear perceptual 
grouping via a blank area that indicates the shape of the moving object.

(Anstis, 1980; Ullman, 1979; Yuille and Grzywacz, 1988; Sporns et al., 1991). Similar to 
the stereovision problem, the correspondence is established by detecting point-to-point 
correlations between two observations. In fact, it is exactly the difference between the 
two image observations that reveals the object. Despite the simplicity of the experimental 
design, this visual task does provide us some insight about the perception of coherent vi
sual motion. The binocular disparity and binocular matching of stereo images produce a 
critical cue for motion perception.12 It was early hypothesized (e.g., Singer, 1999; von der 
Malsburg, 1999), though still arguably (Shadlen and Movshon, 1999; Farid, 2002), that 
human visual system uses a temporal synchrony scheme for perceptual grouping. In a 
general setup of motion perception, the rigid (or non-rigid) body of the object is moving in 
a background-varying scene. Despite the varying background, the human is still efficiently 
capable of identifying the “figure”, partially due to the effect of top-down expectation- 
driven attention of the brain.

We have noticed that the key to the success of the above-studied two tasks is to 
establish a correspondence between two observations via feature extraction (based on 
higher-order statistics). It is interesting to mention that, although there is no explicit 
mixing process involved (note that we have no direct access to matrix S or A), the way 
we treat the stereo images as two mixed sources containing non-Gaussian features allows

12Note that, although our designed experiment here treats the moving stimulus as a stereo visual input 
rather than a motion signal, we should not exclude the importance of the motion cues such as the optical 
flow and motion field, as used in many other motion detection approaches (Ullman, 1979; Verri et al., 
1992).
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us to perform an ICA-like computation. However, different from ICA, the stochastic 
correlative rule (3.1), being an algorithm for pattern extraction, avoids the complete 
separation and accomplishes the coincidence detection via a coherent computation.

We have also tried several popular ICA approaches, including the JADE (joint ap
proximate diagonalization of eigen-matrices, Cardoso, 1999) and natural gradient (Amari 
et al., 1996) algorithms, to the above two visual tasks. In the binocular fusion experiment, 
two separation results obtained from the batch JADE algorithm and iterative natural gra
dient rule (2.11) (being an anti-Hebbian rule) are shown in Figure 3.5. As seen in the 
figure, the solutions arising from the ICA approaches are quite different from the one 
from the ALOPEX (see Figure 3.1). The ICA algorithms obviously attempt to separate 
out two distinct sources ( “figure” and “ground”) rather than establishing the correspon
dence through feature extraction and coincidence detection. Similar observations were 
also found in the Gestalt grouping experiment.

Rem arks: It is noteworthy to comment that the natural gradient and the ALOPEX 
both belong to the iterative optimization approach; in solving the binocular fusion prob
lem, they approach different solutions (Figures 3.5 and 3.1) in a number of different ways:

•  It is found that the gradient-free ALOPEX is slightly more efficient (in terms of 
number of iterations to approach the solution) than the gradient-based algorithm 
such as the natural gradient: with pre-whitening step, natural gradient usually 
converges within 5 iterations (for Figure 3.5); without pre-whitening step, no con
vergence was observed within 500 iterations in our experiments, while the ALOPEX 
only takes 3 ~  5 iterations (without whitening) for the same experimental setup. 
This is probably due to the fact that the natural gradient algorithm attempts to 
minimize the mutual information between outputs y i and y 2, a task more difficult 
than the one used by the ALOPEX, which essentially performs feature extraction 
to produce two coherent outputs.

•  The natural gradient algorithm often requires some prior knowledge in terms of 
choosing activation function for the non-Gaussian sources. In contrast, the ALOPEX 
is independent of the objective function to be used; it also requires neither activation 
function nor pre-whitening step in this visual task.

•  It is also interesting to observe that the solution (Figure 3.1) obtained from the 
ALOPEX preserves the texture of the original visual images, whereas the solutions 
obtained from the ICA algorithms (Figure 3.5) seem to contradict our visual per
ception experience. This perhaps, in another way, explains why in approaching the 
solution, ALOPEX might be more biologically plausible.
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Figure 3.5: Source separation results for stereo images from the JADE (top row) and the 
natural gradient algorithm (with pre-whitening) after 5 iterations (bottom row).

3.3 Source Separation and Extraction: C ocktail Party  
Effect

3.3 .1  C ock tail P arty  P rob lem

The cocktail party problem, first proposed by the British scientist Colin Cherry (then a 
visiting professor at MIT), is a psychoacoustic phenomenon that refers to the remarkable 
human ability to selectively attend to and recognize one source of auditory input in a noisy 
room environment, where the hearing interference is produced by competing speech sounds 
or a variety of noises that are often assumed to be independent of each other (Cherry, 
1953). Following the early pioneering work of Cherry and his colleagues (see Chen, 2003b, 
for a detailed review), numerous efforts have been dedicated to the cocktail party problem, 
in such diverse fields as physiology, neurobiology, psychophysiology, cognitive psychology, 
biophysics, computer science, and engineering. Half a century after Cherry’s seminal 
work, however, it seems fair to say that a complete understanding of the cocktail party 
phenomenon is still missing, and the story is far from complete; the enigma about the 
marvellous auditory perception capability of human beings remains elusive.

In addressing the cocktail party problem, three fundamental questions are of interest: 
What is the cocktail party problem? How does the brain solve it? Is a machine capable 
of solving it? The first two questions are human-oriented, which mainly involve the 
disciplines of neuroscience, cognitive psychology, and psychoacoustics; the last question is 
rooted in machine learning, which involves computer science and engineering disciplines. 
We refer the interested reader to (Chen, 2003b) for a comprehensive overview.

In relating our proposed algorithm to the above problem, we propose a correlative
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Figure 3.6: A functional diagram of sound mixing and auditory streaming. The two 
modules are responsible for segregating different objects in the auditory scene. To model 
the selective attention mechanism in the thalamus, a dynamic gating network is postulated 
to decide/switch which module is to be selected through a thalamocortical loop. Here W  
is a 2 x 2 matrix. Here X' denotes the rotated version of the original mixed signal matrix 
X; Y  and Y ' recover two different auditory streams.

firing mechanism underlying the stochastic correlative learning rule, as described in (3.1), 
as a postulated solution to a simplified cocktail party problem with an instantaneous 
linear mixing setup. Motivated by (but different from) the ICA or blind source separa
tion (BSS) approaches in the literature, our solution attempts to find the “interesting” 
figure out of the sound mixtures, instead of separating out all of the sources. With a 
slightly different goal-oriented procedure, our proposed solution overcomes the require
ment of conventional ICA approaches regarding the number of sensors. We also suggest 
an associative neurophysiological (correlative firing) mechanism underlying the correlative 
learning rule.

3 .3 .2  Source S ep aration  and E xtraction

How to segregate the attended speech is an essential task in auditory perception (Bregman, 
1990). In the auditory cortex, the brain attempts to reconstruct the original auditory 
scene, which requires sound localization ( “where”) and sound streaming ( “what”). The 
goal of figure-ground segregation in this context is to recover the speech signal of interest 
(“figure”) from a complex auditory scene. Consider a binaural hearing scenario where 
there are two audio sources x i and X2. We speculate that in different parts of the auditory 
cortex, there exist distributed modules that are responsible for processing the mixing 
signals X  =  [xi,X2]t , received from the two ears after certain sophisticated preprocessing 
by the cochlea. Different modules perform different segregation tasks, and the selected 
attention mechanism is governed by a gated network that decides to focus on one stream 
or switch to another. Each module runs a stochastic correlative learning rule as (3.1) 
and produces two coherent outputs Y  =  [yi, Y2]T- The computations in the modules are 
performed in parallel and the respective segregation outcomes are distinct (see Figure 3.6). 
It should be stressed that the learning rule (3.1) makes no attempt to conduct the same job
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Figure 3.7: (a) The two speech signals used as source inputs: x i and X2. The numbers 
indicate the kurtosis statistics of the signals (the same for the subsequent figures), (b) 
The recovered signals from two modules after 400 iterations of correlative learning rule, 
(c) The spectrograms of the clean and recovered signals.

as conventional ICA algorithms, whose goal is to separate all the sources (possibly more 
than two given merely two sensors). Here the outcomes from each module are identical, 
hence only one stream is attained in each module. This is consistent with human auditory 
perception experiences: at a particular moment, we only pay special attention to one or 
another source, but not together. In the segregation task, we are only interested in 
recovering the figure rather than separating or decomposing the scene (Bregman, 1990). 
The role of selective perception enables us to hear (or see) what we expect to hear (or 
see). Therefore, from the start of the sensory perception the concepts of “figure” and 
“ground” should be identified. In each module, sounds or voices should be perceived 
synchronously and coherently. This key observation was found in the experiments using 
our learning rule. We have suggested that Figure 3.6 is a simplified model of auditory 
perception. Nevertheless, no claim is made here that this is a complete story. In fact, 
it is more realistic to integrate multiple cues by introducing certain feedback pathways 
between the visual and auditory cortices (see Chen, 2003b, for discussions).

We have tried different numbers of sensors and sources in the simulated cocktail party 
problem. Motivated by a biological constraint, we focus on the cases with two sensors and 
different numbers of sources (up to 4) and different mixtures of source signals, as shown 
below. The speech signals used here have the sampling frequency 8kHz, unless specified
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I

Figure 3.8: The learning curves of kurtosis of two segregated sources in Figure 3.7, where 
the mixing matrix is randomly initialized. The solid curves indicate the kurtosis curves 
change along the learning process. The dashed line indicate the true kurtosis values of 
two original sources. As seen, one curve actually converges after 100 iterations, then it 
seems to run into over-learning.

otherwise. The initial demixing matrix W  is often set as 0.5 x I .13 The choices of 77 and 
7 determine the convergence speed and stability of the optimization process. We have 
consistently used r) =  7 =  0.01 for all the tasks reported here, and no divergence result 
has been found.

T w o Sensors and T w o Sources. In Figure 3.7, we used two speech signals (both 
super-Gaussian) as source signals, the mixing matrix A  was randomly initialized. In the 
figure, the matrix

[ 0.56 0.79 ‘
-  [ -0 .7 5  0.65

was used. Since each module can only recover one source, in order to recover another 
one in the scene, we assume another mixing matrix for the second module, denoted by 
A 7, subject to an orthogonal rotation operation of A: A 7 — A R , where R  is a rotation 
(unitary) matrix with a rotation angle 6:u

_  _  cos6 —sin9 
sin 0 cos 6

Hence, we can get another mixed signal for the second module as X 7 =  A 7S =  (A R )S  
(here R  can be interpreted as a selective attention mechanism). Two modules were

13Note that due to the simulation effect here, the previous learned experience (i.e. pre-wired synapses) 
cannot be beneficial to the next trial; this is nevertheless not the case for the human brain.

14It is obvious that when 6 =  7t / 2 ,  it is equivalently performing a permutation operation to the mixing 
matrix A.
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Figure 3.9: The two sensors and two sources case: (a) Source signals, one is a speech 
signal (super-Gaussian), another is uniform random noise (sub-Gaussian). (b) Separated 
signals, (c) Source signals, one is a speech signal (super-Gaussian), another is Gaussian 
noise, (d) Separated signals.

operated in parallel, and the outcomes produced the complete “figures” of the scene. 
Figure 3.8 shows the kurtosis curves of two modules’ output along the learning process 
(within 400 iterations); clearly, the curves gradually converge to the true statistical values. 
Alternatively (but not equivalently),15 without the knowledge of the mixing matrix A, we 
can use X' =  R X  =  R (A S) to introduce a variability between X  and X7 within the two 
different modules. Note that, different from conventional ICA algorithms, the product 
(WA) is far from a diagonal matrix. For instance, in Figure 3.7, we have

(W A)modu/ei 0.0952 4.5126
-1.2080 4.2998 (^VA)mo<fotZe2

4.3671 -0.1959  
4.2247 1.3230

Consequently, the output signals Y  =  W X  =  W (A S ) do not resemble the source matrix 
S (even up to possible permutation and scaling). Another segregation result under a 
different situation (one super-Gaussian the other sub-Gaussian) is shown in Figures 3.9a 
and 3.9b.

15Note that this is not equivalent since the matrix multiplication is noncommutative.
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Figure 3.10: The two sensors and two sources case: (a) Two speech source signals, (b) 
Separated results, (c) Phase diagram of two source signals that are uniform distributed in 
[—0.5,0.5] and have the same kurtosis statistics, (d) Phase diagram of the mixed signals 
(of one module), (e) Phase diagram of the separation signals.

In order to test the robustness of the non-Gaussianity assumption about the sources, 
we have also attempted to separate a mixture of a speech signal (super-Gaussian) and a 
Gaussian noise source. It was found that the separation performance degraded somewhat, 
but the recovered speech signal was still clearly distinguishable (Figure 3.9d). Since the 
figure-ground segregation task is based on the characteristic of kurtosis, a natural question 
to ask is the identifiability problem: if two sources have the same kurtosis statistics, can 
the learning rule (3.1) recover them? Our experiments (see Figure 3.10) have confirmed 
a positive answer. One experiment is on the time-reversed speech signals. In another 
experiment, two uniform distributed signals were designed to be nearly uncorrelated (with 
correlation coefficient 0.01) but have the same kurtosis value of 1.80.

In addition, as a comparison with the conventional ICA approaches, we also conduct 
a square demixing experiment using the natural gradient (Amari et al., 1996) and JADE 
(Cardoso, 1999) algorithms. The source signals are two 2.5s duration speech signals with
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Figure 3.11: Experimental comparisons, (a) The two original source signals, (b) Two 
mixed signals, (c) Separated signals from the natural gradient rule after 300 iterations, 
(d) Separated signals from the JADE algorithm (batch approach). (e)(f) Separated signals 
(of two modules) from the ALOPEX with objective functions of maximum kurtosis (3.2) 
and negentropy (3.3) after 1000 iterations, respectively.
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sampling frequency 16kHz. The instantaneous mixing matrix is set as

0.35 0.21 
0.34 0.62

For a fair comparison, the mixed signals (i.e., the matrix X ) are pre-whitened (with zero- 
mean and unit variance) before testing the three algorithms; all algorithms are performed 
in the batch mode, with the same initial demixing matrix W  =  0.5 x I; the learning rate 
for the natural gradient rule (2.11) is set as rj =  0.1, whereas the parameters for ALOPEX 
are rj =  0.01 and 7 =  0.01. Figure 3.11 shows the separation results obtained from the 
natural gradient rule (2.11) with the objective function (3.6), JADE, and the ALOPEX 
learning rule (3.1) using the objective functions (3.2) as well as (3.3). It was found that the 
natural gradient and JADE algorithms converge faster than the ALOPEX (or have better 
performance within the same number iterations); this is not surprising since ALOPEX 
is a stochastic gradient-free optimization rule and the search direction is rather random, 
whereas the deterministic algorithms such as the natural gradient, JADE, and FastICA 
are more efficient due to the use of extra knowledge (e.g., choice of activation function, 
eigen-matrix decomposition, orthogonality constraint, etc.). Note that we make no claim 
here to find the global solution using the learning rule (3.1). Actually in perceptual 
learning, no global solution is required; rather, an efficient and robust procedure is more 
favorable. In addition, it should be noted that the conventional ICA algorithms (including 
natural gradient, FastICA, and JADE) are limited by the assumption of square mixing; 
namely, the number of sensors must be no less than the number of sources. However, this 
constraint does not apply to the ALOPEX while using the objective function (3.2), as we 
show below in the degenerate mixing cases.

T w o Sensors and M ore T han T w o Sources. When the number of sources is greater
than the number of sensors, the system becomes under-determined. Since it is impos
sible to construct the complete orthogonal modules, the complete separation becomes 
intractable. In such cases, we turn to perform source extraction instead of source separa
tion. Namely, only one stream of sources is extracted from the two mixtures. One of the 
experimental results for this situation is shown in Figure 3.12, where the mixing matrix

0.4120 -0.3445 0.1677
0.3590 0.3191 0.2819A  =

is used. The same principle can be extended to the case of two sensors and four sources. 
See Figure 3.13 for the experimental results, where the mixing matrix is

0.56 0.79 0.15 -0 .3 7
-0 .7 5  0.65 -0 .11  0.86

A  =

It was observed in Figures 3.12 and 3.13 that although the systems were under-determined, 
the recovered signals were still distinguishable or intelligible (for speech signals). However, 
the success of recovering all the “figures” in a scene in the under-determined situation is 
not always guaranteed in every trial; rather, it is quite dependent on the mixing matrix 
A. We will give more analysis on this issue in Section 3.5.
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Figure 3.12: The two sensors and three sources case: (a) Source signals, (b) Mixed signals,
(c) Recovered signal.

R em arks. Typically, the segregation results are usually good when the number of 
sources is identical to the number of the sensors; when the number of sources is greater 
than the number of sensors, the performance degrades somewhat but the “figure” is still 
fairly distinguishable or intelligible. In general, the signal-to-noise ratio (SNR) of the 
“figure” is improved. In an off-line learning setup, the stochastic correlative learning 
rule typically accomplished the tasks within 300 to 2000 iterations, independent of the 
selected non-Gaussian sources. However, the choice of mixing matrix often has an effect 
on the convergence speed as well as separation results. In some cases, for example, the 
algorithm cannot recover the whole scene if the mixing matrix A  is nearly singular. This 
is because if the mixed signals are dominated by one stream, the recovered signal will be 
the dominated one, and the rotation trick will not help any more to recover the others. In 
the source separation/extraction experiments, it was found that the pre-whitening of the 
mixed signals always enhances and improves the final results. The whitening step essen
tially decorrelates between the mixed signals and makes the separation or extraction task 
easier (e.g., Hyvarinen et al., 2001), especially when the sources are correlated and the 
mixing matrix is far from orthogonality;16 therefore, whitening is often used in practice

16If the mixing matrix A  is almost orthogonal, then A A T is close to diagonal; in such a case and 
when the source signals are additionally uncorrelated, then the mixed signals are hardly correlated, 
namely, R x =  E[xxr ] is also close to diagonal. Orthogonality of the matrix A  is beneficial for kurtosis- 
maximization-based ICA algorithms.
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Figure 3.13: The two sensors and four sources case: (a) Source signals, (b) Mixed signals, 
(c) Recovered signal.

as a preprocessing step.

Using objective function (3.2) or (3.3), the learning rule (3.1) produced two duplicative 
outputs (in one module), indicating that the characteristic of (3.1) is to identify the 
“figure” rather than decompose the “ground”. Since the essential function role of (3.1) is 
to perform source extraction, only one signal stream can be extracted from one module. 
As such, the dimensionality of the demixing matrix W  can be set as 1 x n (n >  2) instead 
of 2 x n, where n denotes the number of the sensors.

Thus far, the sound separation/extraction experiments reported here were performed 
within the off-line learning framework. Nevertheless, it is possible to extend the algorithm 
to perform a sequential separation task via the block-by-block processing, which further 
requires on-line estimation of the kurtosis or cumulant statistics appearing in (3.2), (3.4) 
and (3.6). For instance, we can sequentially estimate the cumulant and normalized kurtosis 
statistics as follows:

My(t)) =
«2 (y(t)) =
«4 (y(t)) =

kurt(y(t)) =

43

( 1 -  X)fip(y(t  -  1)) +  Xyp(t),

(1 -  X)k2{y( t  -  1)) +  A(/}2 -  Ai).
(1 -  A) k i { y { t  -  1)) +  A(-6 fx\ + -  4/x i /x3 + £4),
«4 (y(t))
% m )  ’
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where jj,p and kp denote the estimated p-order raw moment (moment about zero) and cu
mulant statistics, respectively, and A is a discount factor. In addition, in real-life acoustic 
environments, the instantaneous linear mixing assumption is not valid, rather, the au
dio sources are often modeled as a convolution operation in temporal domain. By using 
the FFT or subband processing techniques, it is also possible to apply any source sepa
ration/extraction algorithm to the frequency domain (see e.g., Haykin, 2000; Hyvarinen 
et a.i., 2001).

3.4 D iscussion

3.4 .1  C orrela tive Learning and L im itations

To summarize, we have proposed to use a gradient-free, stochastic correlative learning 
rule for several figure-ground segregation tasks, whose common goal is to discover the 
“figure” from a complex “ground” scene and to establish the correspondence between 
two sensors in either stereovision or binaural hearing. Although the stereotype ALOPEX 
procedure is a biologically motivated algorithm (Harth and Tzanakou, 1974; Tzanakou 
et al., 1979), the biological plausibility of the learning rule (3.1) to sensory perception still 
requires further physiological experiments. For instance, the kurtosis objective function, 
while being statistically interesting, is unlikely to be employed in the brain, neither is it 
possible to accommodate the real-time, incremental, visual and auditory processing. A 
more biologically plausible objective function might be the population cells’ synchronous 
firing rate (or the number of firing spikes) that maximizes the neurons’ response (i.e., 
higher firing rate). Hence, a rate-coded correlation-based (Hebbian or anti-Hebbian) 
learning (e.g., Abbott and Song, 1999; Kernpter et al., 1999; Gerstner and Kistler, 2002) 
is more realistic for biological computation. The biological objective function might not 
be unique, and it might also have many constraints.

The hypothesis of a Hebbian-like correlative mechanism of synaptic plasticity is widely 
accepted in neurobiology. One key characteristic of Hebbian learning is that the biological 
computation only requires local information available in the neurons. However, the con
ventional Hebbian learning does not involve any feedback mechanism, which is deemed 
ubiquitous and important in the brain. Including a designed global objective function 
might suggest a top-down expectation for synaptic plasticity, but whether it is biolog
ically plausible is an open question. Research in neuroscience has also suggested other 
synapse developments distinct from the Hebbian synapse (e.g., von der Malsburg, 1981; 
Singer, 1993; Konig and Engel, 1995; Murphy, 2003).

It should be noted that our proposed figure-ground segregation framework is certainly 
over-simplified and is by no means a complete story. More realistic computational models 
should integrate bottom-up cues as well as top-down knowledge for figure-ground discrim
ination. We believe that perception should not impose itself as an NP-hard problem in 
terms of computational effort, which nevertheless does not imply the solution needs to be
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globally optimal. The investigated stochastic correlative learning rule is not intended to 
find a globally optimal solution in all the perception tasks, only a perceptually satisfactory 
solution is sufficient. As we have discussed earlier, the ALOPEX-like algorithms (Harth 
and Tzanakou, 1974; Tzanakou et al., 1979; Harth et al., 1988; Unnikrislman and Venu- 
gopal, 1994; Tzanakou, 2000; Bia, 2001) have many attractive features from a biological 
computation perspective. To repeat some points here, first, it incorporates a feedback 
mechanism in the learning rule, and cycles and loops are important and ubiquitous in 
biology (Bell, 1999). Second, it is natural to relate the pre- and postsynaptic (cause 
and effect) activities by incorporating the higher-order correlation through the objective 
function. Third, the learning rule (3.1) is a sort of “trial-and-error” learning, which re
sembles some form of reinforcement-like learning. Fourth, the ALOPEX-like algorithms 
are temporally synchronous, parallel, and therefore scale well for large systems.

3 .4 .2  T im in g  Issue

The proposed stochastic correlative learning rule requires a number of iterative updates 
for the synapses; however, it is noted that the number of iterations in each task does not 
really reflect the computational time required for the neuronal cell. In fact, the timing 
issue is important in terms of biological plausibility as well as theoretical understanding. 
Being an extremely efficient computer, how much time does the brain really require to 
perform the perceptual tasks? We are not attempting to provide a complete answer here, 
but it is worthwhile to take a close look at this issue.

In the stereovision experiment, the proposed algorithm converges very fast (within 
5 iterations) for the binocular fusion task. Supposing that one iteration between the 
thalamus and the cortex would take 5 ms, the brain therefore requires at least 25 ms to 
“compute” the stereovision, which seems fairly reasonable.

In the cocktail party effect experiment, the quality of solution often requires quite a 
bit of computation (300 to 1000 iterations, depending on the initial condition). Supposing 
that each synaptic computation iteration occurring in the auditory pathways takes 1 ms, 
this implies about 0.3 to Is is required for detecting the signal of interest, which seems 
quite unreasonable in practice. One possible explanation is that some of the synapses 
might be hardwired due to the long-term evolution learned from the past experiences, 
thereby a pre-learned synapse (namely, the initial synaptic weights in W ) might reduce 
the real-time computational burden.

The same explanation might also apply to the unstructured motion perception task. 
Given the common 25 frames/s motion picture standard, assuming a delay of 5 ms per 
iteration, few hundreds of iterations might take 1 to 2 seconds to accomplish the task. 
This seems to be too much time required for the cortex. In addition to the hardwired 
synapse, we suspect that other motion cues may also serve as a catalyst in helping to 
detect a moving object.
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3.4 .3  P ercep tio n -A ctio n  C ycle

It is our belief that these above-mentioned characteristics of ALOPEX-like algorithms 
are crucial for various kinds of cognitive behavior including perception and action. The 
“perception-action” cycle is a key concern in artificial intelligence and neuroscience. Com
putational neuroscientists often model perceptual behavior as a feed-forward process, and 
somehow ignore the feedback mechanisms, or regard them as some side-effects (Bell, 
1999). The conventional ICA is a representative example. '1 However, as we know, feed
back mechanisms are ubiquitous in the human visual (see e.g., Mumford, 1995) as well as 
auditory (see e.g., Chen, 20031)) systems. As far as modeling and learning are concerned, 
we have to incorporate feedback mechanisms into the biological computations. How to 
do it still remains an open problem. Here, because of the above-discussed features of the 
ALOPEX-like algorithms, we suggest that the stochastic correlative learning might fit 
itself into the “perception-action” cycle for computational neuroscience. Tony Bell (2003) 
has suggested a vivid diagram of the “look-think-do” process (see Figure 3.14), which illus
trates very well the loop and cycles in these three intelligent activities — the perception 
and action are inherently interwoven.18 Stated in mathematical terms, we propose the 
following (certainly oversimplified) framework for an interacting “perception-action” pro
cess: Let w  and v  denote the parameters that govern the interacting perception/cognition 
and action processes, respectively; E(w, v) and J (w ,v ) represent two objective (cost or 
reward) functions that relate to the variables w  and v. In general, the “perception” and 
“action” proceed alternately to optimize two objective functions in the following forms:

Awj+i <- riAwtA E t(w u V t ) + i r t , (3.7a)
Avt+1 «- ??AvtAJt(wi+1,v t) + 7nt, (3.7b)

where r and n denote two random factors that influence the above two equations. Basi
cally, in the perception process, while fixing the current v t, equation (3.7a) updates w t to 
minimize/maximize the objective function Et\ in the action process, while taking account 
of the feedback w t+i, equation (3.7b) updates v t to minimize/maximize another objec
tive function Jf, given previous action and previous cost/reward. These two equations 
describes a sensor-motor coupling in the perception-action loop, which can be regarded 
as a sensorimotor coordination in an embedded system where the ALOPEX procedure is 
used as the multiple-objective function optimization engine.

3 .4 .4  Im plications for P ercep tu al Learning and B eyon d

Although thus far we have only focused on figure-ground segregation under the ICA-like 
formulation, the stochastic correlative learning rule, nevertheless, is very generic and can 
be applied to various (unsupervised) perceptual learning tasks (e.g., Fahle and Poggio,

17Recently, Shriki et al. (2001) have generalized the feed-forward ICA to a recurrent architecture with 
lateral inhibitions.

18The “sense-think-act” cycle was also discussed in (Pfeifer and Scheier, 1999, Chap. 12).
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look

think 

do

Figure 3.14: A schematic diagram of “look-think-do” process with loop and cycle (from 
Tony Bell).

2002). For instance, it can be used for learning the decorrelated features of visual scenes 
or learning the factorial representation of the data, or used for learning a feedback model 
of visual attention (Janakiraman and Unnikrishnan, 1992). It can also be applied for 
discovering surfaces in random-dot stereograms using a similar procedure described by 
Becker and Hinton (1992).

We believe that the ALOPEX-like stochastic correlative learning rule is not limited 
to the sensory systems. Rather, the application to the motor system is quite straight
forward. Since (3.1) is model-free, the stochastic correlative learning rule can be used 
for supervised or reinforcement learning. Based on some promising results that will be 
reported later in Chapters 4 and 6, we believe that the stochastic correlative learning 
framework is potentially applicable to perceptual (auditory and visual) learning (Rao, 
1999; Reymond et al., 2002), motion tracking, and motor control (Wolpert and Ghahra- 
mani, 2000). In addition, similar optimization procedures have been utilized for the first 
Brain to Computer Interface (Tzanakou, 2000), for curving fitting and combinatorial op
timization (Harth et al., 1988), for learning decision-trees (Shah and Sastry, 1999; Sastry 
et al., 2002), for auditory stimulus optimization (Anderson and Tzanakou, 2002), and for 
target optimization in surgical treatment of Parkinson’s disease (Hamilton et al., 2000).

3.5 A p p en d ix  on Linear O perator and A lgebra

Under the instantaneous time-invariant linear mixing assumption, the source separa
tion/extraction problem can be understood as solving a linear operator equation:

y  =  A x ,  (3.8)

where A  : X  —> Y  is a linear operator from a normed space X  into a normed space Y.  The 
goal is to recover the source (s) x  from the observations y ,  which is essentially to find an 
inverse operator: A -1 : Y  X .  To understand the solution to such an inverse problem, 
we resort to the regularization theory (see Chen and Haykin, 2002, for a review). In a 
source separation context, operators A  and A ~ l correspond to the mixing matrix A  and 
demixing matrix W , respectively. Suppose A  is an n x m  matrix, where m  denotes the 
number of sources, and n denotes the number of sensors. Note that A  is not necessarily
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a square matrix. When m  =  n, ideally, the solution is given by the inverse operator: 
x  =  A  l y,  or, in the matrix form:

(3-9)

where adj(A) denotes the adjoint matrix of A. Equation (3.9) implies that matrix A  is 
invertible, or det(A) ^  0. When m > n, the linear system becomes under-determined, 
thus solving (3.8) becomes ill-posed. In such a case, recovering the m  sources from n 
mixtures requires extra prior knowledge (e.g., the probability distribution) of the sources. 
In general, it is mathematically intractable. However, if we aim at extracting one source 
only instead of recovering all of them, the solution to (3.8) becomes somewhat well-posed.

Next, we consider the ensuing question: In a source extraction task, given a 2x m ( m >  
2) linear mixing matrix, which source signal will be extracted among the m  candidates 
pool? To answer that, we resort to linear algebraic analysis. Assume rank(A)  =  2 an 
denote Q =  AAr as a 2 x 2 matrix, then rank{Q) = 2. Given a symmetric matrix AAT, 
the condition number is given as: cond(A A T) =  An/Ai, where An (here n =  2) and Ai are 
the maximum and minimum eigenvalues of the AAT, respectively. When A is a square 
matrix, we have cond(A) =  ^Jcond{A A T). In the case when cond(A) or cond(Q) is large, 
the mixing is ill-conditioned, which makes the demixing and segregation difficult. In the 
transformed data space, given m  independent sources, let us simply assume the correlation 
matrix Rg =  E[ssT] ~  ^SST (N  denotes the length of the source signal) is diagonal. Let 
Q' =  ^X X T =  Af(AS)(AS)T = -AA(SS)rAT, taking an eigenvalue decomposition of Q' 
yields

Q' =  U E U T (3.10)

where U  is an orthogonal matrix (i.e. U T =  U _1) with each column being the eigenvector, 
and E  is a diagonal matrix: E  =  diag{<7i, cr2}, where the diagonal elements correspond to 
the eigenvalues (assuming in an ascending order, <72 >  <Ji). Similarly, we also have Q =  
A A t  =  VAVT and V T =  V -1. It can be shown that E =  DA, where D =  diag{di, d2} 
(d2 >  di), where d2 and di are two dominant variance values among the m  sources; 
namely, they are the two principal eigenvalues of the correlation matrix Rs. Hence, the 
principal eigenvalue associated with the principal axis in the transformed data space is 
determined by the product of the principal eigenvalue of A A T and the dominant variance 
value of the source signals. Informally, we have the ensuing proposition:

P roposition . Let X  =  A S be an instantaneous linear mixing matrix, where the row 
vectors of matrix S represent m independent sources. If the condition number of A A T 
is greater than a certain threshold, the separation/extraction task becomes intractable; 
otherwise, the recovered signal in the source extraction task corresponds to one of the row 
vectors of S whose projection aligns closest with the principal axis in the mixed signal 
space. By performing an orthogonal rotation on the mixed signal space, it is then possible 
to recover another signal in the complementary subspace.
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The single source extraction can also be analyzed from a constrained optimization 
perspective. Again, suppose we have two sensors and m  sources; the n source signals, 
represented as a matrix S =  [si, S2, . . . ,  sm]r , are subject to the instantaneous linear 
mixing:

X A S
an a12 
a 21 a 22

0>lm 

&2 m
[S i, S2 , • • • , Sm ] (3.11)

which yields the mixed signals received at the two sensors: X  =  [x i ,x 2]t . Upon passing 
the 2 x 2  demixing matrix W , the outputs Y  =  [yi, y 2]r  are represented as

Y  =  W X
W u  w 12 X l

^ 2 1  w 22 . X 2 .
(3.12)

In expanded form, we write

Yi =  wll(allsl +  Ol2S2 +  • 
y2 =  w2i(anSx +  ai2s2 +

+  O lm Sm ) +  W l2 (<2 2 lS i  +  a 22 S2 H--------- 1" a 2mSm ),

' +  +  w 22{°'21s \  +  a 22S2 H-------+  a 2mSm ).

Suppose we wish to extract a single source s* at the two outputs; letting y i =  cqSi and 
y 2 =  a:2Sj (where a \  and a 2 are two positive or negative nonzero scalars), then, in order 
to obtain perfect single-source (i.e. s*) extraction, we infer the necessary condition:

(twuou +  w12a2i) ±  0,
(wn aij +  w12a2j)sj =  0 (j  =  1, • • • , m; j  ±  i),
{w2\au  +  w22a2i) 7̂  0,
(w2iOy +  w22a2j)sj =  0 (j  =  1, • • • , m; j  ^  i).

If Sj 7̂  0 (j — 1, • • • , to; j  7̂  i), then it follows the equivalent condition:

(■wn au + Wi2a2i) ± 0 ,

(wn aij +  w 12a2j) =  0 [j  =  1, • • • , m; j  ^  i),
{w21au +  w22a2i) j-  0,
(w2iaij  +  w22a2j) =  0 (j  =  1, • • • , to; j  ±  *).

It is noted that when m  >  2, this set of linear equations (involving 4 unknowns and 2m 
variables) are under-determined; namely, there is no solution for { w n ,w i2,w 2i, w22}  to 
satisfy an arbitrary choice of linear mixing matrix A =  {aij}.

Then the optimization problem can be written as:
m

arg min \ \wnaij + Wi2a2j\>  s.t. wxlau +  w 12a2i 0

m
arg min < }  \w2iaij +  w22a2j\ \  s.t. w2iau  +  ^ 22̂21 7̂  0,

U>21,W22 t *■—J )
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which can be understood as a form of maximizing signal-to-inference ratio. The gradient- 
free ALOPEX procedure seems to perform quite well for this constrained optimization 
problem given an appropriate setup of mixing matrix A . More analysis and discussion 
regarding the biological implications are presented in a forthcoming technical report (Chen 
and Hay kin, 2004).
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Chapter 4

Perceptual Learning for Neural 
Com pensation

“A model is the more impressive the greater the simplicity of its premises. ”

— Albert Einstein

4.1 Background

Neural compensation (Becker and Bruce, 2002) was motivated by the design of adaptive 
hearing-aid devices for hearing-impaired persons. The goal of the Neurocompensator is to 
restore near-normal firing patterns in the auditory nerve in spite of the hair cell damage 
in the inner ear. A schematic diagram of normal/impaired hearing systems as well as the 
neural compensation is illustrated in Figure 4.1. Ideally, the Neurocompensator attempts 
to match the output of the compensated system, as closely as possible, to the output of 
the normal hearing system.

The early development of the Neurocompensator was described in (Bondy et ah, 2004). 
In the previous work, the outputs of the normal and damaged models are compared di
rectly at the level of the raw spike trains. However, auditory nerves have high spontaneous 
firing rates, and when driven by auditory input, convey predominantly steady-state infor
mation, whereas the transient information is most critical to speech perception. Beside, 
the algorithm in (Bondy et al., 2004) was tested on vowel sounds, which are relatively 
steady-state. Here, we apply a transient detection procedure to the auditory nerve spike 
trains to simulate higher levels of auditory processing, and we train and test the model 
on continuous speech containing both voiced and unvoiced components. Also, in the pre
vious work, an ad hoc perturbation-like optimization procedure was used to learn the 
Neurocompensator parameters with a simple error metric. Moreover, it does not provide 
a probabilistic measure of how well the Neurocompensator compensates for the hearing 
loss, neither does it present an informative comparative metric between the compensated
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Figure 4.1: A schematic diagram of Neurocompensation. Top: normal hearing system. 
Middle: impaired hearing system. Bottom: Neurocompensator followed by the impaired 
hearing system. The H and H denote the input-output mappings in the normal and 
impaired ear models, respectively.

Speech Sample Content
TIMIT-1 /The emperor had a mean temper./
TIMIT-2 /His scalp was blistered by today’s hot sun./
TIMIT-3 /Would a tomboy often play outdoor?/
TIMIT-4 /Almost all of the colleges are now coeducational./

TIDIGITS-1 /one/
TIDIGITS-2 /one, two/
TIDIGITS-3 /nine, five, one/
TIDIGITS-4 /eight, one, o, nine, one/

and the normal hearing systems. It is our goal in this chapter to formulate a principled 
methodology and improve the optimization efficiency.

4.2 M eth od ology

D ata . The audio data presented to the ear models can be either speech or natural sound. 
In our experiments, the speech data are selected from both the TIMIT and TIDIGITS 
databases. From the TIMIT database, a total of ten spoken sentences by different male 
and female speakers are used for the simulations reported here; the sample frequency of the 
speech data is 16kHz. In the TIDIGITS database, the data consist of English spoken digits 
(in the form of isolated digits or multiple-digit sequences) recorded in a quiet environment, 
with sample frequency 8kHz. All of the experimental data were subjected to resampling 
preprocessing (to 16kHz if applicable) prior to being presented to the auditory models. 
Some of the speech samples used in the experiments are listed in Table 4.1. Ideally, all of
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Figure 4.2: The averaged and joint log-likelihood and the BIC parameters against different 
numbers of mixtures, averaging on different trials for one set of spike-trains data.

the speech samples are truncated to with in the same length.

A u d itory  M od els. The auditory peripheral model used here is based on the earlier 
work of Bruce and colleagues (Bruce et ah, 2003). In particular, the model consists of a 
middle-ear filter, time-varying narrow- and wide-band filters, inner hair cell, outer hair 
cell, synapse model, and spike generator, describing the auditory periphery path from 
the middle ear to the auditory nerve. More recently, a new middle ear model and a new 
saturated exponential synapse-gain control have been incorporated into that model.1 The 
hearing-impaired version of the model described in detail in (Bondy et al., 2004) simulates 
a typical steeply sloped high frequency hearing loss.

We further process the auditory representation generated by the auditory nerve models 
by applying an onset detection procedure (Bondy et al., 2003), consisting of a derivative 
mask with rectification and thresholding (see Section 4.5). This removes much of the noisy 
spontaneous spiking and high degree of steady-state information in the signal-driven spike 
trains. The resultant binary image is used here as the basis for comparing the neural codes 
generated by the normal and impaired models.

P robab ilistic  M od elin g . In order to compare the neural codes of the normal and 
impaired models, we characterized the binary image by its probability density function 
(pdf) or probability mass function (pmf). To overcome the inherent noisiness of the 
spike-generating and onset detection processes, we chose a two-dimensional mixture of

JThe detailed information of the auditory peripheral models is referred to Dr. Ian C. Bruce’s website 
http: /  /  www.ece.mcmaster.ca/~ibruce/.

53

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.ece.mcmaster.ca/~ibruce/


www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

0.25

0.2

0.15

0.1

0.05

0

0.25

0.2

0.15

0.1

0.05

0

0.25

0.2

0.15

0.1

0.05

0

0.25

0.2

0.15

0.1

0.05

0

Figure 4.3: Three selected sets of spike-trains data (with scale ratio 0.25) calculated from 
the normal hearing model and their probabilistic fittings using 20 (the first three plots) 
or 30 (the fourth plot) Gaussian mixtures. For the third plot, C =  22009, Cav =  1.97, and 
BIC(2Q) =  20891; for the fourth plot, C =  23942, £ av =  2.14, and B IC {30) =  22264. It 
is evident that the fourth plot is a better fit than the third one.

Gaussians to characterize this distribution, given its spatial smoothing property across 
the spectral-temporal plane. Suppose that D\ =  (xj}f=1 and D 2 =  {zj}f=1 denote the 
neural codes (i.e. the onset binary images) that are calculated from the normal and
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Figure 4.4: From top to bottom: (a) The initialized 20 Gaussian mixtures via A-means 
clustering, (b) The Gaussian mixture fitting after 80 iterations of the EM algorithm, (c) 
The log-likelihood convergence curve, (d). Another fitting result obtained from a different 
initial condition.

impaired hearing models (Bruce et al., 2003), respectively.2 Assume that p(D i\M )  is 
a probabilistic model that characterizes the data D\,  when M  here is represented by a

2Note that in general, I ^  I' .

55

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

Gaussian mixture model, i.e. M  =  {cj, /Ltj;

Note that D\ =  {x*} G IRd are calculated from the normal ear model (with input- 
output mapping H) given the audio or speech data; suppose the data x  are drawn from a 
two-dimensional (d =  2) mixture of Gaussian density:

where Cj is the prior probability for the jth  Gaussian component, with mean and co- 
variance matrix E j1. With the assumption of i.i.d. (independent, identically distributed)

and the associated average log-likelihood Cav =  £ /£ .

In order to account for the model complexity, we can use penalized maximum likeli
hood incorporating a complexity metric such as the minimum description length (MDL) 
or Bayesian information criterion (BIC). For instance, for a K -mixture model, the BIC is 
defined as

Figure 4.2 shows a comparison of different metrics for varying the number of mixture 
components.

The clustering is fitted via a mixture of elliptical Gaussians using the EM algorithm 
(see Appendix A). It is known that the EM algorithm is only guaranteed to converge

3Note that this assumption is not strictly valid for our spike-trains data.

K

P(x ) =  ^ 2 p U)p (x \3)
j=1

1,
-  x x|x  — M jl), (4-1)

samples,3 we can calculate the joint likelihood of the data given the mixture model M :

e

Alternatively, we can calculate the log-likelihood

e
C =  logp(D i|M ) =  ^ lo g p ( x j ) , (4.3)

B I C (K )  =  "  Y  loS
i= l

where £k  represents the total number of free parameters in the model; in the mixture of 
Gaussians case,

(4.5)
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monotonically to a local minimum or saddle point. In our early investigations (Gupta, 
2004), several empirical findings were observed: (i) It is necessary to rescale the time 
and frequency ranges for better Gaussian mixture fitting; an optimal scale ratio of 0.25 
applied to the normalized time-frequency coordinate is suggested; namely, the time-axis 
is constrained within the region [0,1], whereas the frequency-axis is within the region 
[0,0.25]. This is tantamount to scaling the variance of the coordinates and compressing 
the data in terms of their distance, which gives an advantageous ease for probabilistic 
fitting, (ii) For the spike-trains onset map, a total of 20 ~  30 mixtures of elliptical 
Gaussians is sufficient to characterize the data distribution (see Figure 4.3), although 
the optimal number of mixtures varies from one data set to another. For simplicity, a 
fixed number of mixtures determined empirically is assumed throughout our experiments, 
though it is realized that this is not a principled solution. In addition, Gaussian mixture 
fitting via the EM algorithm is well known to be sensitive to the initialized (mean and 
covariance) parameters (see Figure 4.4 for an illustration), both for the convergence speed 
and log-likelihood performance. With a better initialization scheme compared to (Gupta, 
2004), we use the R-means clustering method (e.g., Duda et al., 2001) to initialize the 
mean parameters to accelerate the convergence. We found that 10 to 20 iterations of the 
batch EM algorithm produce reasonable fitting results for all data used thus far.

Spectral E nh an cem en t. Spectral enhancement is achieved by neural compensation 
through the Neurocompensator. The principle of the Neurocompensator is to control the 
spectral contrast via the gain coefficients using the idea of divisive normalization (Schwartz 
and Simoncelli, 2001). In particular, the gain coefficient, Gi, at the ith frequency band, 
is calculated as

a -  l i C   (46)

where % and j  represent the indices of the frequency bands; Gi is a nonlinear function 
of the weighted input (frequency) power, ||/i||2, divided by the weighted sum of all the 
frequencies’ power; a  is a regularization constant that ensures that the gain Gi does not go 
to infinity. Applying gain coefficients to frequency bands is tantamount to implementing 
a bank of linear filters. The divisive normalization was originally aimed at suppressing 
the statistical dependency between the filters’ responses (Schwartz and Simoncelli, 2001). 
Here, we employ a similar functional form, but rather than adapting the normalization 
coefficients to optimize information transmission, we adapt the parameters to optimize a 
measure of similarity between the codes generated by the two models.

For the present purpose, we propose a slightly different version of (4.6) as follows:

Gi =  h (  Wf ; l  ^  Y  where wt oc G ?AL~RP, (4.7)

where q ^ al~rp represents a positive coefficient based on NAL-RP (National Acoustics 
Laboratories—Revised Profound), a standard hearing-aid fitting protocol (Byrne et al.,
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1990) that can be calculated from the *th frequency band (see Bondy et al., 2004); and h(-) 
is a continuous, smooth (e.g., sigmoid) function that constrains the range of the gains as 
well as assures the gains to vary smoothly in time. When h(-) is linear and Q ^AL~RP =  ^  
equation (4.7) reduces to (4.6). On the other hand, when all =  0 and h(-) is linear, 
equation (4.7) reduces to the standard, fixed linear gain NAL-RP algorithm. For the 
hearing aid application, it is appropriate to constrain Gi >  0.4 Now, the goal of the 
learning procedure is to find the optimal parameters {v ji}  that compensate the hearing 
impairment or intelligibility according to a certain performance metric. Note that those 
parameters account for some psychophysical meaning, it is not a purely unconstrained 
optimization problem; rather it is subject to certain implicit constraints. For instance, we 
expect that for a fixed frequency bin j ,  {v ji}  has an “on-center off-surround” effect; the 
gain coefficients Gi should be nonnegative, bounded, and varying smoothly over a short 
period of time. It is important to note that, unlike the traditional hearing aid algorithms, 
the parameters to be optimized are not independent, in the sense that the cross-frequency 
interference may cause modifying one parameter to indirectly affect the optimality of the 
others. All of these issues make the learning of the Neurocompensator a hard optimization 
problem, and the solution might not be unique. In our early investigations (Bondy et al., 
2004), the optimization procedure and the error metric used therein were quite ad hoc, 
and certain instability during the optimization was also observed. Here, we attempt to 
recast this optimization problem in a more principled way.

O ptim ization . Let 6 =  {% } denote the vector that contains all of the parameters to 
be estimated in the Neurocompensator. Let D 2 =  {z,} denote the data calculated from 
the deficient ear model (with input-output mapping H), after preprocessing the audio 
(speech) with the Neurocompensator parameterized by 6. Let p(D 2\M, 0) be the marginal 
likelihood of the impaired model’s spike trains having been generated by a normal model, 
then the associated log-likelihood can be written as

1 , e1 k

-  \ogp(D 2\M, 0) =  -  log ( "[I Y I  S *'> Zi)j
i= 1 fc=l

1 I' K

S log ( S  ck N (v k, z i) ) ,

i=l k= 1

where M  is a Gaussian mixture model fitted to the normal hearing model’s output, D i, 
by maximizing \ogp(D i\M ), which can be optimized off-line as a preprocessing step. One 
way of optimizing the Neurocompensator would be to maximize C!av with respect to 0; 
however, directly maximizing it may cause a “saturation”, since the number of points in 
D 2, might grow over £.5 A better objective function that does not suffer this pitfall, is 
the Kullback-Leibler (KL) divergence between the probability of observing the impaired

4The case G, <  0 has an effect of phase reversal to the frequency domain.
5This has been confirmed in our experiments. The worst case of the “saturation” effect will be that 

{zi} are uniformly distributed across the whole spike-trains map.

58

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

HBEI 
■■ *1 I■■I

u p  _ mtt ■■i ? mmm m i-i i t
U P  w f
H I  . i . ■■I

H I  >1 l l l l l l l  
i I I I  « ■ ■ ■ ■ ■ ■  

. *■■■■■■
■« -!■' "  *>-• _ii, ^ R f l l l  

s a x 7t7»« 
imfia  * i,r i i e l  ?* i n  

% i • J; I I I  i*  J  i « ■
ir i* < »; lOPJi* 30 1 »L jyA yi ———J

■■ 
■ ■  i■ ■ a  ■ ■  a ■■■
■■a ■ ■  a

0.25

0.2

0.15

0.1

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25 

0.2 

0.15 

0.1 

0.05 

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

! I * I I*

Ji 'j| £  M !??■"

Prtbin^D,)
Pr(bin.|M)
KLD=0.1888

0.005

150 200
Indices of the bins

Figure 4.5: A grid quantization (top panel) compared with a Gaussian mixture fitting 
(middle panel) on the spike-trains map. Each map contains 40 x 10 =  400 bins; the 
Roman numbers inside the bins indicate their respective indices. Bottom panel: the 
approximation comparison between pi =  p(bini\Di) and p2 =  p(bini\M ) (i =  1, • • • , 400), 
KL(px||p2) =  0.1888.
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model’s output under the normal versus impaired density function. Unfortunately, cal
culating the latter is much more costly, because it must be done repeatedly, interleaved 
with optimization of the Neurocompensator parameters 6. We therefore consider a dis
crete sampling approach to estimate this density, which is computationally simpler than 
fitting a Gaussian mixture model.

Specifically, we quantize or discretize evenly the spike-trains onset map into a number 
of bins, where each bin contains zero or more of the spikes. To quantitatively measure 
the discrepancy between the normal spike-trains and reconstructed spike-trains maps, we 
calculate the probability of each bin that covers the spikes; this can be easily done by 
counting the number of the spikes in the bin and further normalizing by the total number 
of the spikes in the whole spike-trains map. In particular, the objective function to be 
minimized is a quantized form of the KL divergence:

E  s  K L (D 4 D x) =  x ;  p(frm,|P2) lo g P|j” ^ , (4.8)

where pQnn^Di) and p(6m j|D 2) represent the probabilities of the ith bin that contains 
the spikes in the normal and reconstructed spike-trains maps, respectively. Note that 
p(bini\Di) can be calculated (only once) in the preprocessing step. In our experiment, 
we quantize evenly the spike-trains map into a (40-time) x ( 10-frequency) mesh grid (see 
Figure 4.5 for illustration), with a total number of 400 bins.

However, equation (4.8) suffers from two drawbacks: (i) For some bins, the denom
inator p(bini\D i) can be zero, thereby causing a numerical problem, (ii) There is no 
smoothing between two discrete maps, hence it will suffer from the noise in the spiking 
and/or onset detection processes. Fortunately, since we have the Gaussian mixture proba
bilistic fitting for D i at hand, this can provide a spatial smoothing across the neighboring 
(time and frequency) bins, thereby counteracting the noise effect. To overcome the above 
two problems, we therefore substitute p(bini\D\) (quantized version) with p(bini\M ) (con
tinuous version), where p(bini\M ) is calculated by fitting the center point in the ith bin 
with the Gaussian mixture model M , divided by a normalization factor: ^2jP(birij\M) 
(see Figure 4.5 bottom panel for illustration).6 To do so, we modify (4.8) to obtain another 
objective function:

E  s  K L(P2||M) =  log E g g .  (4.9)

Note that p(bini\M ) is usually a nonzero value due to the overlapping Gaussian covering, 
although it can be very small.7 As before, p(bini\M ) can be calculated in the preprocessing

6To see how close the approximation is, we calculate the KL divergence in the example of Figure 4.5: 
E?=°i P(Wn< |.Di) log =  0.1888.

7To avoid the numerical problem in practice, we add a very small value (10“ 16) to the denominator 
to prevent overflowing.
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frequency
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Figure 4.6: Block diagram of training the Neurocompensator (Nc). The normal (H) and 
impaired (H) auditory models’ output is a set of the spike trains at different best frequen
cies, when are then subjected to an onset detection process, while the Neurocompensator 
is represented as a preprocessor which calculates gains for each of the different frequencies. 
The error (denoted by a sum of frequency-weighted signals) is actually the KL divergence 
between the probability distributions of the two models’ outputs.

step. When p(6m ;|D 2) =  p(birii\M), it follows that E =  0, otherwise E  is a nonnegative 
value given 0 <  p(bini\D2) <  1,0 <  p(birii\M) <  l .8 Since the probability p(6m j|D2) can 
be zero, we have assumed that 0 log 0 =  0.

It is noted that direct calculation of the gradient in either (4.8) or (4.9) is inac
cessible due to the characteristics of the ear model as well as the form of the objective 
function, hence we can only resort to gradient-free optimization, as discussed previously 
in Chapter 2. During the training phase, the gain coefficients are adapted to minimize 
the discrepancy between the reconstructed and the original spike trains (see Figure 4.6).

Thus far, the complete learning procedure is summarized as follows:

1. Initialize th e  param eters: {v^} € U(—0.5,0.5), a  =  0.001; random ly se le c t  on e sp eech  sam ple.

2. Load th e  se lec ted  sp eech  d ata , th e  assoc ia ted  sp ike-trains fittin g  m ixture param eters M  = 
(c j ,/^ ,E j} ,  and th e  probability p(birii\M), th e  latter tw o  o f  w hich  are precalculated off-line.

3. Apply th e  short-term  Fourier transform  (S T F T ) to  th e  sp eech  d ata  (1 2 8 -p o in t FFT w ith a 
6 4-p o in t overlapping H am m ing w indow 9); th e  resu lts o f  tim e-freq u en cy  analysis then  provide 
th e  tem poral-spectra l inform ation across frequency b an d s.10

4. Apply th e  gain coeffic ien ts  0 to  th e  frequency bands according to  (4 .7 ) ,  perform inverse Fourier 
transform  to  reconstruct th e  tim e-dom ain  waveform .

8It seems difficult to derive the upper-bound of the objective function (4.9).
9For 16kHz sampling frequency, it corresponds to a duration of 8 ms.

10Depending on the frequency resolution requirement, the number of frequency bands can vary from 
20 to 40; we use 20 frequency bands in the experiments.
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5. P resent th e  reconstructed  waveform  to  th e  hearing-im paired ear m odel, produce a “Neuro
com pensated" spike-trains map.

6. U sing th e  quantized  approxim ation to  th e  hearing-im paired data  probability density, and th e  
precalculated G aussian m ixture m odel, ca lcu late th e ob jective function  (4 .9 ) .

7. Apply th e  A LO PEX-like algorithm  to  op tim ize 0.

8. R epeat S tep s 3 through 7 for a certain num ber o f  iterations.

9. S elect another sp eech  sam ple, repeat S tep  2 through 8. R epeat th e  w hole procedure until 
convergence.

As far as Step 7 in the optimization procedure is concerned, two kinds of optimization 
schemes can be considered:

•  Synchronous optimization: namely, all of gain coefficients are treated with no dif
ference; all the parameters are updated in parallel across different frequency bands. 
This scheme is simple, but due to the cross-frequency interdependence of the coef
ficients, it can be very slow, given a poor parameter initialization.

•  Asynchronous optimization: namely, the gain coefficients in different frequency 
bands are treated differently and optimized sequentially with different priority. 
Starting with the highest frequency band, all the other parameters associated with 
the lower frequency bands are set as zeros, update only the parameters associated 
with the high-frequency band. Then freeze these parameters, switch to a lower (i.e., 
the second highest) frequency band, repeat the optimization, and so on. For each 
frequency band, the optimization stopping criterion is empirically set as repeating 
10 ~  15 iterations. This sequential optimization can be justified by virtue of the fact 
that in a hearing-impaired system, it is the lower frequencies that tend to interfere 
with the detection of higher frequencies, and not the converse.

4.3 E xperim ental R esu lts

To reduce the computational burden, we have consistently used a fixed number (K  =  20) 
of Gaussian mixtures for fitting all of spike-trains data. We present results here based on 
the training speech samples listed in Table 4.1, totaling about 14.1 seconds of continuous 
speech.

We apply the improved version of the ALOPEX-B algorithm (Section 2.3.5) for op
timization, where the objective function to be minimized is (4.9). Figure 4.7 shows the 
performance metric curve using the synchronous optimization scheme. We have not ex
tensively investigated the asynchronous optimization scheme; but it was observed in an 
empirical test that the inappropriate initialization may cause unstable performance. For
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Table 4.2: Training and testing results of the experimental data in Table 4.1. The last 
column indicates the approximation accuracy between the quantized pmf and continuous 
Gaussian mixture pdf on the neural codes obtained from the normal hearing system; it 
can be roughly viewed as a lower-bound for the values in the third and fourth columns. 
The second/third columns show the KL divergence of (4.9) before/after using the Neuro- 
compensator; the numbers in bold font indicate the training results._________________

Speech Sample KLinit(D2\\M) KL/inai(D2||M) KL/ina;(D2||Di) KL(Di||M)
TIMIT-1 1.2058 0.4462 1.2828 0.1885
TIMIT-2 0.6152 0.4697 1.9255 0.2493
TIMIT-3 0.6692 0.6105 1.7367 0.2741
TIMIT-4 0.6477 0.4666 1.8329 0.2743

TIDIGITS-1 1.0626 0.1798 0.5591 0.0547
TIDIGITS-2 1.0234 0.4345 1.5918 0.1634
TIDIGITS-3 0.4913 0.2013 0.5759 0.0871
TIDIGITS-4 0.6346 0.2599 0.3757 0.1888

this reason, we have restricted ourselves here to the synchronous optimization scheme. 
Figure 4.8 illustrates the final parameters of the Neurocompensator.

Note that finding the optimal 0  from normal spike-trains is an ill-posed inverse prob
lem,11 hence it is impossible to build a perfect inverse model. However, it is hoped that 
the reconstructed spike-trains image from the compensated hearing-impaired model is 
close to the one from the normal hearing model after the learning the Neurocompensator. 
Figure 4.9 shows the comparisons between the normal, deficient, and Neurocompensated 
waveforms and spike-trains maps of the training speech sample.

Upon completion of the training process, we freeze 6  and further test the Neurocom
pensator on some unseen speech samples. The training and testing KL divergence results 
of the experimental data are summarized in Table 4.2. Two testing results on two spoken 
speech signals are shown in Figure 4.10; it is seen that the Neurocompensated spike-trains 
maps are reasonably close to the normal ones, though not perfect. This is quite encour
aging, given the fact that we have only used about 3.7 seconds of speech for training here; 
ideally, given sufficient computational power, we should use as many speech samples as 
possible for training. It is hoped that by averaging across more speech samples (with 
different contexts, speakers, spoken speeds, etc.), the learning process can yield a more 
accurate and robust solution.

4.4 D iscussion

In this chapter, we have described a novel methodology for training a Neurocompensator, 
an ingredient of a learning-based, intelligent hearing-aid device. The whole learning pro-

11This is because the solution is neither unique nor stable (due to the noise involved).
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Figure 4.7: Learning curve of one speech sample using synchronous optimization. The 
KL divergence starts with 0.63 and stays around 0.4 after 90 iterations.

//
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Figure 4.8: Visualization of the learned-weights { }  and the fixed-weights {w i} of the 
Neurocompensator. The learned parameters {v ji}  are displayed in a 20-by-20 matrix, 
with each column representing the weights associated with the 20 frequency bands.

cess is achieved by (i) probabilistic modeling of auditory nerve model’ spike trains and (ii) 
a gradient-free optimization procedure for parameter update. Based on our empirical ex-
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periments, it has been shown that the Neurocompensator provides a promising approach 
to adaptive compensation for reducing perceptual distortion due to hearing loss.

We have observed some problems with our current approach. In particular, we have 
found in the experiments: (i) The optimization solution is non-unique. As seen from 
Figure 4.9, there are still obvious differences between the normal and Neurocompensated 
spike-trains maps. We suspect that constraining the solution space and incorporating prior 
knowledge might somewhat alleviate this issue, (ii) The parameters are somewhat training 
data-dependent. In other words, one set of Neurocompensator parameters good for one 
speech sample does not necessarily produce a similarly good performance for another 
one (see Table 4.2). This problem should be somewhat alleviated by averaging across 
more training samples. Another solution to this problem may be to train a mixture of 
Neurocompensator modules adapted to different input statistics, such as different talkers 
under varying listening conditions. One could then use a trained classifier to select the 
best Neurocompensator for the current context.

One obvious weakness here is the use of a fixed number of mixtures for different 
spike-trains image data. In order to alleviate the computational burden of our procedure 
and focus on the optimization part, we have neglected to consider model selection in our 
probabilistic modeling. In the literature, however, there are some principled ways, such 
as Bayesian approaches (Roberts et al., 1998; Attias, 2000), merging-splitting approach 
(Ueda et al., 2000), or greedy approach (Verbeek et al., 2003), to tackle this issue.

Another important area for future investigation is the design of the gain function 
(4.7). We have found that the form of the gain function (e.g., the range and the shape of 
function h(-)) has a vital effect on the optimization performance, particularly on the speed 
of convergence. The possibility of incorporating prior knowledge or adding constraints to 
the gain function might also accelerate the convergence speed of optimization. How to 
design an optimal form of the gain function remains a yet-unsolved problem.

After further development of our algorithm, the ultimate test of its efficacy will be 
to conduct human hearing tests. The hearing-impaired person(s) will listen to the recon
structed speech waveform yielded from the hearing-aid device (i.e. Neurocompensator) 
and compare the intelligibility quality with and without the hearing compensation. Note 
that once the training is accomplished, the hearing test requires no additional computa
tional effort and is easily performed. Furthermore, once the Neurocompensator parame
ters are optimized, the algorithm represented by equation (4.7) could be straightforwardly 
and efficiently implemented in a digital hearing-aid circuit.

4.5 A p p en d ix  on O nset M ap G eneration

The spike-trains onset stimuli are used in our experiments for perceptual grouping. For 
completeness, the onset map generation procedure (Bondy et al., 2003) is briefly described 
here.
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Onset characteristics of the auditory perception are calculated with a difference of 
exponential filters, hi[n], in each frequency band:

Tl Tl
hi[n\ =  —  e x p ( - n /a i )   ̂e x p (-n /a 2), (4-10)

a 2

where aq and 0:2 are selected to pass frequencies from 4 to 32 Hz. These frequencies 
contribute most to intelligibility, with a signal’s fine temporal structure only adding a 
small amount to intelligibility (Drullman et al., 1994).

The onset data are then integrated over a typical acoustic event time window, /i2[n], 
which has a 6dB cutoff at 125Hz. This integrator is defined as follows:

Tl
M n] =  —  exp(-ra/ai). (4-11)

a z

For a sample rate of 11025Hz, the parameters are chosen to be oq =  0.06, a 2 =  0.10, <23 =
0.001. An adaptive threshold and refraction operation is then applied. The threshold value 
is selected to produce some percentage (say 0.1~0.5%) of active events in the discretized 
time-frequency grid when the refractory period is set as 1 ms. The greater the threshold 
value, the sparser are the spikes in the onset map; on the other hand, increasing the 
refractory period would thin out the continuous blocks in the onset map. Typical threshold 
value is within the region [1,1:7], and typical refractory period value is chosen between 
100 and 150.
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Figure 4.9: Comparisons of normal, deficient, and Neurocompensated speech waveforms 
(top three panels) and spike-trains onset maps (bottom three panels). The deficient 
speech waveform is produced by preprocessing the signal through the standard NAL-RP 
algorithm, with all gains set to Gi =  q NAL-rp £or 20 time-frequency bands and 
then reconstructing the signal by inverse FFT; the deficient spike-trains map is generated 
using the hearing-impaired model applied to the deficient waveform. The KL divergence 
between the deficient and normal spike trains is 0.664 before the learning, as opposed to
0.42 between the Neurocompensated and normal spike trains after the learning.
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Figure 4.10: Testing results on two untrained continuous speech samples. Comparison 
is made between the normal and Neurocompensated spike-trains onset maps. The KL 
divergence of equation (4.8) is 0.2013 between the first two maps, and 0.5591 between the 
last two maps.
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Chapter 5

M onte Carlo M ethods for Bayesian  
Estim ation

“The probability of any event is the ratio between the value at which an expec
tation depending on the happening of the event ought to be computed, and the 
value of the thing expected upon its happening. ”

— Thomas Bayes

5.1 Prelim inaries

D efin ition  5.1 L etp (x ) =  dPJj^ denote the Radon-Nikodym density of probability distri
bution P (x ) w.r.t. a measure p. When x  G X  is discrete and p  is a counting measure, 
p(x) is a probability mass function (pmf); when x  is continuous and p  is a Lebesgue 
measure, p(x) is a probability density function (pdf).

Intuitively, the true distribution P (x) can be replaced by an empirical distribution 
given the simulated samples:

1 Np 

iVP i= 1
where S(-) is a Radon-Nikodym density w.r.t. p  of the point-mass distribution concen
trated at the point x. When x  e  X  is discrete, <5(x —x ^ )  is 1 for x  =  x ^  and 0 elsewhere. 
When x  G X  is continuous, <5(x — x ^ )  is a Dirac-delta function, <5(x — x w ) =  0 for all 
xW zf x, and Jx dP(x)  =  f x p(x)dx =  1.

D efin ition  5.2 The Markov assumption holds when the current state only depends on a 
finite history of the previous state. A stochastic process satisfying the Markov assumption 
is called a Markov process (for continuous time) or a Markov chain (for discrete time).
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D efin ition  5.3 Assuming a state vector x  € in a probability space (Q ,,P ,P ), and 
* ( v )  is a transition kernel, then a first-order Markov chain is a sequence of random 
variable {x t}t>0 such that

P (x t|xo, • • • , x t_!) =  P (x t|xt_i),

and fC(xt_i,Xj) oc p(xt|xt_i). (In discrete finite state case, RT(xt_ i ,x t) reduces to a 
matrix.) Hence, for Markov chains, the probability chain reads as

t
P (x 0,x  !,••• ,Xt) =  P (x 0) JJP(X i|X i_i).

i—l

5.2 B ayesian S tatistics and Bayesian E stim ation

Bayesian theory (Bernardo and Smith, 1998; Robert, 2001) is a branch of mathemati
cal probability theory that allows people to model the uncertainty about the world and 
the outcomes of interest by incorporating prior knowledge and observational evidence. 
Bayesian analysis, interpreting the probability as a conditional measure of uncertainty, is 
one of the popular methods to solve the inverse problems. The Sufficiency Principle and 
Likelihood Principle constitute two axiomatic principles in Bayesian inference (Robert, 
2001).

There are three types of intractable problems inherently related to the Bayesian statis
tics:

1. N orm alization: Given the prior p(x) and likelihood p(y|x), the posterior p(x|y) 
is obtained by the product of prior and likelihood divided by a normalizing factor:

K *|y) =  f (5-DJxP(y|x)p(x)dx

2. M arginalization: Given the joint posterior (x, z), the marginal posterior is esti
mated by:

p(x ly) =  /  p(x , z ly)dz, (5-2)
Jz

as shown later, marginalization and factorization play an important role in Bayesian 
inference.

3. E xpectation: Given the conditional pdf, some averaged statistics of interest can 
be calculated as:

Ep(x|y)[/(x)] =  [  /(x )p (x |y )d x . (5.3)
Jx
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In Bayesian inference, all uncertainties (including states, model, and priors) are 
treated as random variables. The inference is performed within the Bayesian frame
work given all of the available information. And the objective of Bayesian inference is to 
use priors and causal knowledge, quantitatively and qualitatively, to infer the conditional 
probability, given the finite observations. Optimization and integration are the two funda
mental numerical problems arising in statistical inference (Robert, 2001); as we see later, 
these two problems can be naturally tackled by Monte Carlo simulation. In a sequential 
estimation (filtering/smoothing) framework, we are particularly interested in applying the 
Bayes’ rule (Bayes, 1763) for recursive Bayesian estimation.

5.3 M onte Carlo Sam pling and P artic le  F iltering

In this section, we will briefly review some key concepts of Monte Carlo sampling and
sequential Monte Carlo estimation (a.k.a. particle filtering) methods.

5.3 .1  G eneric  S ta te-S p a ce  M od el

Let us consider a discrete-time generic state-space model:

Xf+i =  f(f, x t,u t,d t), (5.4a)

y  t =  g(£,Xt,ut, v t), (5.4b)

which respectively describe the time-varying state and measurement equations. x t rep
resents the state of interest; y t is the measurement vector; ut is the known input vector 
that appears in either state or measurement, or both equations; f  and g  are two generic 
vector-valued functions, which are potentially time-varying; dt and v t represent the dy
namic and measurement noise processes, respectively, with appropriate dimensions. The 
state equation (5.4a) characterizes the state transition probability p(xi+i |x t), whereas the 
measurement equation (5.4b) describes the likelihood p(yt |xt). For simplicity, we assume 
that the noise covariances of dynamical and measurement noises, Ed and Ev, are known. 
The dynamic state-space model (5.4a) and (5.4b) can be illustrated via a graphical model 
in Figure 5.1.

5.3 .2  B ayesian  F ilter in g

Bayesian estimation theory provides the most elegant framework for solving (5.4a) and 
(5.4b) for the state vector x t, given the set of observations y0:t =  {yoi yi, • • • , Yt}- More 
specifically, given the observations and the state-space model, the requirement is to se
quentially estimate the conditional filtering posterior p(xt|yo:t) evolving through time, 
which is intrinsically governed by the Kushner equation (Kushner, 1965) or Zakai equa
tion in the stochastic differential equation (SDE) theoretic framework (see Chen, 2003a,
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input t-i

state

t+1

measurement

Figure 5.1: A graphical model illustration of the generic state-space model.

for a review). The celebrated Kalman filter (Kalman, 1960) is indeed an instance of 
Bayesian filtering under the linear, Gaussian assumption. Since the Gaussian density is 
only characterized by the first- and second-order statistics, Kalman filter turns out to 
be sufficient for the linear Gaussian model. However, in general cases of a non-Gaussian 
environment, estimating the posterior becomes intractable. Although various approxima
tion techniques, such as the Gaussian sum filter (Anderson and Moore, 1979), grid-based 
discretization, piecewise approximation (Kramer and Sorenson, 1988), and point-mass 
approximation (Bucy and Senne, 1971), have been advocated in the literature, these ap
proximate methods are either unreliable (inaccurate) or computationally prohibitive.

To circumvent these difficulties, the idea of Monte Carlo simulation was introduced to 
the filtering community in late 1960s and 1970s (Handschin and Mayne, 1969; Handschin, 
1970; Zaritskii et al., 1975; West, 1992; Tanizaki, 1996). Partially due to the limited com
putational power available at that time, sequential Monte Carlo estimation did not attract 
much attention from researchers until very recently. Various sequential Bayesian filter
ing approaches have been developed in different areas under different aliases, such as the 
bootstrap filter (Gordon et al., 1993), sequential imputation (Liu and Chen, 1995), CON- 
DESNSATION (Isard and Blake, 1998), or Monte Carlo filter (Kitagawa, 1996; Tanizaki, 
2000). We will treat them in this paper under the generalized particle filtering framework. 
The reader is referred to (Doucet et al., 2001; Arulampalam et al., 2002; Chen, 2003a) for 
a comprehensive overview of the state-of-the-art research in this area.

Sequential-Im portance-Sam pling

In many situations, it is often hard, if not impossible, to directly draw samples from the 
target density p(x), which is often non-Gaussian. In order to avoid the difficulty we can 
use importance sampling to draw the samples. To do that, we introduce a known function 
q(x) known as a proposal distribution (or importance density), which is close in shape to 
the target p(x). Suppose we want to evaluate the mean statistic of a generic function
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/(x );  it turns out that

E[/(x)] =  J / ( x ) ^ j g ( x ) d x

= J  f(x)W (x)q(x)dx, (5.5)

where the W (x) =  p(x )/q (x )  are called the importance weights. If the target density is 
a conditional posterior p(xo:t|yo:t) given the observations from 0 up to t ,1 (5.5) can be 
represented as

E[/(x,)] = /  /(x,)9W x1t ^ ) ,(X‘|X" 1’ y‘)<iX‘

p(yi

where

W t(xt) _  (5.7)

Thus (5.6) can be rewritten as

yi _  f  / ( x f)Wt(xt)g(xf |xt_!, y  t)dxt 
1 /p(yo:t|xt)p(xt)dxt

=  /  /  (xt)Wt(xt)g(xi |xt_1, y t)dxt 
f  Wt(xt)^(xt|xt_ 1, y t)dxt

_  E q(Xt|xt_1,yt)[W t(x t ) / ( x t)] /g g\
I W ^ . y ^ ^ ) ]  ’

where the expectation in both the numerator and denominator are performed with respect 
to the proposal distribution q(x). By drawing Np i.i.d. samples { x ^ }  from g(xt|xt_ i ,y t), 
we can approximate (5.8) as

E L/(X*)] l V'JVp
Np  Z ^ i = l  v v t

Np
-  5 3  W?’/ ) * ! 1) =  / ( * ) ,  (5.9)

where the normalized importance weights are given as

n - (5 -10)Np w o r
7 = 1
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Propagation of importance weights Propagation of importance weights
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Figure 5.2: An illustration of weight degeneracy problem without ( left panel) and with 
(right panel) resampling in a one-dimensional nonlinear state estimation problem. The 
resampling threshold in this example is set as Nt =  Np/ 2 =  50.

In a sequential filtering/estimation framework, by choosing a factorized proposal dis
tribution, it can be shown that the importance weights are updated recursively as follows 
(Doucet et ah, 2000):

oc

K X0:i|y0:t)

p(ytlxjt))p(xjt) |x^ 1)p(x^_1 |y0:f-i)  

lX0:Ll. yO:tMXol-l |y0:t-l)

(i) p(ytlx it))p(xtt)lxi-i)
9(x tl)lx S-i>yo:t)

(5-11)
(̂x tSx 0:Lm yt)

Equation (5.11) underlies the basic principle of sequential importance sampling (SIS) filter. 
In practice, however, it has been shown (Kong et ah, 1994; Liu and Chen, 1995) that the 
distribution of the importance weights becomes more and more skewed as time increases; 
hence, after some iterations, only very few particles have non-zero importance weights (see 
Figure 5.2 for an illustration). This phenomenon is often referred to as weight degeneracy 
or sample impoverishment. An intuitive solution is to multiply the particles with high 
normalized importance weights, and discard the particles with low normalized importance 
weights, which can be done in the resampling (selection) step. To monitor the degeneracy, 
a suggested measure called effective sample size, Neff, was introduced in (Kong et al.,

1 We use notations xou and you to denote the collections of variables x  and y  from time 0 to t, 
respectively.
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1994; Doucet et al., 2000)

eff 1 +  Var9(.|yo.t) [W (x0:t)]
N

p <  Np. (5.12)
21(̂■lyo:.) [(^(XO:*))

The second line of (5.12) follows from the fact that Var[£] =  E[£2] — (E[£])2 and E jlT ] =  1. 
In practice, the true Neff  is not available, thus its estimate, Ne/f) is suggested for use 
(Kong et al., 1994):

N eil =  „ 1- - (5-13)
E & (W ',W)2

When Neff  is below a predefined threshold NT, the resampling procedure is performed. 
In a sequential filtering framework, the resampling step is almost inevitable, however, it 
also introduces some random variations. It should be pointed out that resampling does 
not really prevent the weight degeneracy problem; rather, it just improves the sample 
efficiency by discarding the particles associated with insignificant weights. Since it replaces 
the particles with high importance weights with many replicates, it also introduces certain 
correlations within them, especially when there are only a few dominant weights. This 
problem is sometimes called the loss of diversity. To improve this, Maxkov chain Monte 
Carlo (MCMC) techniques (see Appendix B for details) usually come into the rescue 
(Gilks et al., 1996; Gilks and Berzuini, 2001). In the literature, there exist a variety of 
resampling schemes (Gordon et al., 1993; Liu and Chen, 1998; Carpenter et al., 1999; 
Kitagawa, 1996)) and resampling schedules; we refer the reader to (Doucet et al., 2001; 
Chen, 2003a) for more information. Table 5.1 summarizes a generic form of SIS particle 
filtering with multinomial resampling. A schematic diagram of generic particle filtering 
is illustrated in Figure 5.3.

Another important issue in particle filtering is the choice of a proposal distribution, 
which plays an important role in determining the estimation performance. Usually, choos
ing a proposal distribution is problem-dependent and demands a good understanding of 
the problem at hand. Some potential criteria for a good proposal distribution include:

•  The support of the proposal distribution should cover that of the posterior distri
bution; in other words, the proposal should have a broad distribution.

•  The proposal distribution has a long-tailed behavior to account for outliers, which 
ensures the unnormalized importance weights are upper bounded.

• The sampling procedure is easy to implement.

• Account is taken of transition prior and likelihood, as well as the recent observation 
data.
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Figure 5.3: An illustration of generic particle filter with importance sampling and resam
pling.

•  A minimum variance is achieved.

•  The proposal distribution is close (in shape) to the true posterior.

However, satisfying all of these goals is not easy and we do not know what the posterior is 
supposed to look like. It has been shown (Doucet et al., 2000) that the choice of proposal 
^(xtlx^uyo;*) =p(xt|x|!^1,y t) minimizes the variance of WtW.

Lem m a 1 (Doucet et al., 2000) q(xt \xQl_l , y Q:t) =  p (x t|x ^ l 5y t) is the optimal impor
tance function that minimizes the variance of the importance weights conditional on x ^ x 
and yo:t, for which a zero variance Varq[W^} =  0 is achieved (therefore no resampling is 
required).

By choosing such an optimal proposal distribution, the importance weights can be recur
sively calculated as:

Wtw = W^ptytlxWj),r (i) (0 (5.14)

which follows from equation (5.11) and the Bayes rule: p(xt|x ^ 1,yt) =  P̂ytlx* ■

However, this optimal choice suffers from two drawbacks (Doucet et al., 2000): it requires 
(i) sampling from probability distribution ^(xtlx^^yn) and (ii) evaluating the integral 
^(ytlx^i) =  f  p(yt|xt)p(xt|x ^ 1)dxt. In general, it is difficult to achieve these goals, 
except for special cases with analytic (approximate) solutions (e.g., Doucet et al., 2000). 
In practice, choosing different proposal distributions essentially leads to different kinds of 
particle filters.
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___________________ Table 5.1: SIS filter with resampling.___________________
For tim e step s  t = 0 , 1 , 2, • • •

1: For i =  l , - - -  ,NP, draw th e  sam ples x ^  ~  q(xt\^)t_v yo-t) and se t  x^J =

( x «  x (iht 0:t—1 > t /■
2: C alcu late th e  im portance w eigh ts according to  (5 .1 1 ).

3: N orm alize th e  im portance w eigh ts according to  (5 .1 0 ) .
4: C alcu late Nef f  according to  (5 .1 3 ) , return if Nef f  > Nt , o th erw ise  gen erate  a new

particle se t  { x ^ }  by resam pling w ith replacem ent Np tim es from  th e  previous se t  

{x[,* |} w ith  probabilities P r (x ^ ]  =  x^ J) =  W^j,  reset th e  w eig h ts  =  1/NP.

Table 5.2: SIR filter using transition prior as proposal distribution.
For tim e step s  t =  0 , 1 ,2 ,  • • •

1: Im portance Sam pling: for i =  l , - - -  ,NP, draw sam ples

x (<) -  f x W x (i) l  0:( — I 0:t—1’ t /■
2: Im portance W eight Update: = p ( y t |x ^ ) .
3: N orm alize th e  im portance w eigh ts according to  (5 .1 0 ) .

4: R esam pling: G enerate Np new particles x ^  from  th e  se t { x ^ }  accord ing to  th e  

im portance w eigh ts W®.

Sam pling-Im portance-Resam pling (SIR) Filter

The sampling-importance-resampling (SIR; a.k.a. Bayesian bootstrap) filter (Gordon 
et al., 1993) is very similar to the SIS filter. A difference between them is that in SIR the 
resampling step is always performed at every step, where in SIS it is not. In practice, the 
proposal distribution of the SIR filter is usually chosen as transition prior density, which 
is easy to implement, in which case it turns out that the current importance weights only 
depend on the likelihood. Table 5.2 summarizes such an algorithm. Many improvement 
schemes, such as stratified sampling (Carpenter et al., 1999) and auxiliary variable (Pitt 
and Shephard, 1999), have been developed for the SIR filter; see (Doucet et al., 2001; 
Chen, 2003a) for more details.

5 .3 .3  M etro p o lis-H a stin g s A lgorith m

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), being the 
first Monte Carlo algorithm, is a general and powerful MCMC technique (see Appendix 
B for background and details). In what follows, we briefly describe its idea and imple
mentation.

Let 7r(x) denote the target (equilibrium) probability distribution, and suppose that
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q(x,  x') is the proposal distribution that does not satisfy the detailed balance condition:

x(x)q(x, x') =  7r(x')q(x',x) (5.15)

Without loss of generality, suppose 7r(x)q(x,x') >  7r(x/)<j(x/, x ) ,  which means the proba
bility moving from x  to x' is greater (more frequent) than the probability moving from x' 
to x. Intuitively, we want to change this situation to reduce the number of moves from 
x to x'. In doing so, we introduce a probability of move, 0 <  a(x,  x 1) <  1; if the move is 
not performed, the process returns x  as a value from the target distribution.

In doing so, the transition probability from x  to x 1 becomes:

P m h ( x , x ; )  =  

o;(x, x ' )  =

q(x, x ')a(x , x'),

^(x)fev X] - if * (x)$(x, x') > 0, 
otherwise

mm

(5.16)

(5.17)

Thus, the probability that the Markov process stays at x  can be written as:

1 — /  q(x, x ')a(x , x')dx',
Jx

and the associated transition kernel is given by

(5.18)

- K m h ( x ,  dx') = q(x, x')a(x,  x')dx'  +  1 — f  q(x ,x ')a(x ,x ')dx '  5x(dx'). ( 5 .1 9 )
L Jx

To summarize, the Metropolis-Hastings sampling algorithm reads as follows:

1. For i =  1, • • • , Np, a t iteration t = 0, draw a starting point xo;

2. gen erate a uniform random variable u ~  U{0 ,1 ) ,  and x ' ? (x t ,- ) :

3. If u < a ( x t , x ' ) ,  se t  x t+ i =  x!, else  x t+ i  =  x t ;

4. t <— t + 1, repeat step s 2 and 3, until certain (say k) s tep s (i.e . burn-in tim e), store x ^  =  x/,,.

5 . i *— i+1, repeat th e  procedure until Np sam ples are drawn, return th e  sam ple se t  {x^x\  • • • , x^Np\

5.4 Im proved Schem es for Particle F iltering

5.4 .1  A  B r ie f O verview

In the past few years, many efforts have been devoted to improving the particle filters’ 
performance (see e.g., Doucet et al., 2001; Chen, 2003a, for more information). We briefly 
describe several improved schemes and illustrate the underlying weakness behind the 
conventional SIR filter (a.k.a. Bayesian bootstrap filter).
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Figure 5.4: Left: Ed < Ev, transition prior p(xt |xt_i) is peaked compared to the flat 
likelihood p(yt |xt), and their overlapping region is indicated by the thick line; Middle: 
Ed ~  Ev, the supports of the prior and likelihood largely overlap, where the prior proposal 
works well; Right: an illustration of a poor approximation of the transition prior as 
proposal distribution when the likelihood is peaked when Ed > Ev. Sampling from the 
prior does not generate sufficient particles in the overlapping region.

One of the reasons of using a transition prior p(xt|x t_i) as proposal g(x(|x0.t_i, y t) 
(as in the Bayesian bootstrap filter) is its simplicity. By doing so, in light of (5.11), the 
importance weights are updated as:

w f  =  y .lx f’), (5.20)

This simplification sidesteps sampling from the proposal and makes the weights propor
tional to the likelihood p(yt|xt). However, the transition prior essentially neglects the 
information of the observation y t; in addition, it does not take into account of the noise 
statistics (i.e., Ed and Ev) appearing in the state-space model. Without too much diffi
culty, one can imagine that if the samples drawn from the transition prior do not cover 
the likelihood region, the performance of the particle filter will be very poor since the 
contributions of most particles are insignificant (see Figure 5.4 for a one-dimensional ex
ample illustration). For this reason, many improved versions of particle filtering have 
been developed.

A u xiliary  P artic le  F ilterin g . The idea of the auxiliary particle filter (APF, Pitt and 
Shephard, 1999) is to introduce an auxiliary variable, £, with a role as the index indicating 
which mixture the particles belong to. The APF differs from the SIR filter in that it 
reverses the order of sampling and resampling, which is possible when the importance 
weights only depend on current states. APF consists of a two-step procedure: First, 
simulate the particles with a predictive likelihood; second, reweigh the particles and draw 
the augmented states. The APF can also be interpreted as a one-step ahead filtering: the 
particles x ^  is propagated to ^  in the next time step in order to assist the sampling. 
The performance of the APF is usually better than that of the SIR since it uses more 
information including the recent observation y t; but when the likelihood is not insensitive 
to the state, the difference between the APF and SIR will be insignificant.

G aussian P rop osa l P artic le  F ilterin g . As the name indicates, the proposal distri
bution is approximated as a Gaussian distribution. The sufficient statistics (mean and
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covariance) of the Gaussian proposal is estimated recursively via the extended Kalman fil
ter (Doucet et al., 2000; Wan and van der Merwe, 2001). In general, these kinds of particle 
filters produce better performance, but they are often more computationally costly. When 
the proposal distribution is non-Gaussian and approximated via the unscented transfor
mation (Julier et al., 2000; Julier and Uhlmann, 2004) or unscented Kalman filter (UKF, 
Wan and van der Merwe, 2001), it yields the so-called unscented particle filter (UPF, 
van der Merwe et ah, 2000). In some special cases where the linear Gaussian or Gaussian 
mixture are assumed, mixture Kalman filter (MKF, Doucet et al., 2000; Chen and Liu, 
2000), Gaussian and Gaussian sum particle filters (Kotecha and Djuric, 2003a,b), can be 
developed along this line.

M CM C Particle Filtering. When the state space is very large (say Nx >  10), the 
performance of particle filters depends heavily on the choice of the proposal distribution. 
In order to tackle more general and more complex probability distributions, MCMC meth
ods are often required. In the particle filtering framework, MCMC is used for drawing 
the samples from an invariant distribution, either in sampling or resampling step. Many 
researchers have tried to integrate the MCMC techniques to particle filtering, (e.g., Liu 
and Chen, 1998; MacEachern et ah, 1999; Pitt and Shephard, 1999; Fearnhead, 2002). 
One special kind of MCMC particle filter is the resample-move algorithm, which combines 
the SIR and MCMC sampling. The basic idea is as follows (Gilks and Berzuini, 2001): 
The particles are grouped into a set St =  { x ^ } ^ x at time step t, and they are propagated 
through the state-space equations by using SIR and MCMC sampling, at time t +  1, the 
resampled particles are moved according to a Markov chain transition kernel to form a 
new set St+1; in the rejuvenation stage, two steps are performed: (i) In the resample-step, 
draw the samples {x[^} from St such that they are selected with a probability proportional 
to (W (x^)}; (ii) In the move-step, the selected particles are moved to a new location by 
sampling from a Markov chain transition kernel.

Bearing the goal to circumvent the weakness of the conventional SIR filter while 
keeping the its simplicity, in the next two subsections, we propose two improved schemes 
using gradient proposal and Turbo processing principle.

5.4 .2  G radient P rop osa l P artic le  F ilterin g

As discussed earlier, the conventional SIR particle filter does not take into account the 
recent observation into the proposal. To overcome this, we propose to use the gradi
ent information of the observation to select the “informative” particles. The main idea 
behind the proposed new filter is to introduce a gradient MOVE-step followed by the 
sampling for the proposal distribution, which is plugged in after the sampling step in the 
conventional SIR filter; it is also more efficient than the ad hoc prior boosting method 
(Gordon et al., 1993). This new algorithm essentially calculates the gradient information 
from the likelihood model and guides the particles towards the low-error region, along the
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gradient-descent direction; by assuming an additive measurement noise model in (5.4b) 
and denoting its first-order gradient w.r.t. the state vector as £(y), the MOVE-step is 
described by

x* =  x t - t f ( y )
% - g ( x )|2

x * - » 7- <9x
(5.21)

y = y  t ,x = x t

where 0 <  rj <  1 is a small-valued step-size parameter, x t denotes the predicted estimate 
from the state equation (i.e., the a priori sample drawn from p(-|xt_ i)), and x t denotes 
the sample after the MOVE-step (which is regarded as the a posteriori sample). As ex
pected from (5.21), the inclusion of current observation y t and the calculation of gradient 
information will tend to push the samples to a high-likelihood region, thereby providing 
more reliable predictive samples for the next step. In this case, the proposal distribution 
can be derived as

g(xt|xt_ i ,y t) =  J  p(xt|xt,yt)p(xt|xt-i)rfxt

5(xt -  x t +  ^ (y t))p (x t|xt_1)dxt/ '
=  p(xt +  f7£(yt)|xt-i)
=  p ( X t | X t _ i ) .

In summary, the new algorithm on particle filtering with gradient proposal reads as 
follows:

1. For i =  1, • • • , Np, sam ple x ^  ~  p (x o ) ,  — 1 /Np.

2. Im portance sam pling: x |^  ~  p ( x t | x ^ 1).

3. For each  sam p le {x^}, run th e  M O V E -step  via (5 .2 1 )  using th e  ob servation  yt to  obtain  th e  

sam ple { x ^ } .

4. Im portance w eigh ts update:

and norm alize th e  im portance w eigh ts via (5 .1 0 ) .

5. C alcu late Neff  from (5.13), if Neff > Nti g °  t0  S tep  7; o th erw ise g o  to  S tep  6.

6. R esam pling a s  in th e  SIR filter.

7. R epeat s tep s  2 through 5.
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The idea of gradient proposal is similar to the HySIR algorithm (dcTTeitas et al., 2000) 
that was developed for training neural networks. The difference between ours and theirs 
is the complexity. In the HySIR algorithm, every particle is propagated and updated 
through the extended Kalman filter (EKF) equations, thus the complexity is 0 (N pN%). 
Our algorithm’s additional computational overhead is only 0 ( N pNx).

It is noteworthy that the above-proposed algorithm is tantamount to choosing a two- 
step proposal distribution, namely:

where z t is an intermediate latent variable that we have used in (5.21) as zt =  x t. Such a 
proposal distribution is also similar (but not identical) to the one obtained by approximate 
linearization (Doucet et al., 2000). However, unlike the scheme therein to sample x t from 
the localized proposal, we choose the proposal as a gradient-included transition prior 
p(xt|zt), where the latent variables z t are obtained via pushing the samples to the high- 
likelihood region. Compared to the linearized proposal therein, our scheme is intuitively 
simpler and problem-independent; namely, it can be used for any state-space model where 
the gradient of the measurement equation can be calculated. A more sophisticated scheme 
is to replace the scalar step-size r) with a step-size matrix ^E"1. The choice of r) is 
usually problem-specific; a typical value in our experiments is rj £  [0.001,0.005]. In 
addition, this technique is applicable to the filtering as well as the smoothing problem. 
It should be cautioned that the particle filtering procedure using gradient information is 
not asymptotically consistent, in a sense that the gradient step introduces certain bias to 
the estimate, and the empirical distribution of particles is not theoretically guaranteed 
to converge to the right posterior. However, it can be regarded as a “mode” tracker that 
seeks the peak of the posterior.

In certain cases, the order of Steps 2 and 3 can be reversed; namely, the samples are 
first driven by the gradient-descent MOVE step and then drawn from the transition prior. 
However, in such a case we should use the previous measurement y t_i instead of current 
observation y t (see Section 5.7 for detailed discussion). In so doing, the MOVE-step and 
the importance weight update will become

x t-1

(0 _

x t- i  -  rj

Wt(-iP(yt|xtw)

d |y -g (x )p
3x y = y t - i , x = x t _ i

(i)xP(xt|xSi)

where x ^  ~  p(xt|xt- i )  represents the simulated sample from the intermediate estimate 
x^x of the MOVE-step. Nevertheless, by doing so we have ignored the information from 
the most recent observation y (.
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slave filter

time tt im e  f+1

master filter

Figure 5.5: A schematic diagram of Turbo-particle filtering.

5 .4 .3  T u rb o-P artic le  F ilter in g

Recalling Lemma 5.3.2, constructing an optimal (only in the sense of Lemma 5.3.2) pro
posal distribution (^ x tlx ^ ^ , y t) =  p(xt|x ^ 1, y t) suffers from two difficulties, which gener
ally are analytically intractable. In the sequel, we propose a new solution to sidestep these 
difficulties. The idea was motivated from Turbo decoding in communications (Berrou and 
Glavieux, 1996), where two decoders are run in parallel to achieve maximum a posterior 
(in Bayesian sense) decoding. Research in the coding community has shown that Turbo 
decoding performs very well under low signal-to-noise ratio (SNR) and almost approaches 
the Shannon limit. The secret of the success of Turbo decoding is that it breaks down the 
solution into two parts, solves them separately, and then combines them; two decoders 
take advantage of each other’s (previous-step) outputs and therefore self-boost the per
formance iteratively (see e.g., Haykin and Moher, 2004, for details). Bearing the same 
philosophy in mind, we introduce the Turbo principle (feedback, divide-and-conquer, and 
iterative processing) for particle filtering. Basically, we use one filter (so-called slave fil
ter) to produce a first-stage (rough) estimate of x t; and we run another filter (so-called 
master filter) to yield the second-stage (ultimate) estimate, which uses x t as well as its 
own previous estimate x[^x for constructing a suboptimal proposal in a recursive particle 
filtering fashion.

A schematic diagram of Turbo-particle filtering is illustrated in Figure 5.5. In Fig
ure 5.5, there are two filters to be run iteratively. The slave filter, being an extended 
Kalman filter (EKF) for example, is used to produce a rough estimate x t|t, given the cur
rent observation y t and previous state estimates x ^ .  Note that in the prediction step, 
every particle x ^ x is passed through the state equation, where the predicted covariance 
can be estimated by the sample covariance, P t|t_i, or calculated through linearization; in 
the filtering step , instead of using all of the samples we only use its mean value,2

2Alternatively, one can use the approximate the MAP value: Xt|t_i — , which requires additional
evaluation of each particle’s likelihood.
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x t|t- i  =  to perform the EKF update:

x t|( =  x t|t_i + Pt|t_ iG f (G(Pt|t_ iG f +  Ev) 1(yt — g (x t|t_i)), (5.22)
Pt|t =  P t|t- i +  Ptit-iGjiGtPt^Gj +  E vJ-'GtPti*-!, (5.23)

where Gt is the Jacobian matrix of the measurement equation, P f|( is the filtered state co- 
variance. Note that the filtered estimate x t|t is more accurate than the predicted estimate 
X(|t_i, since it utilizes the most recent observation y t. In the meantime, the master filter, 
given y t and the previous simulated samples { x ^ x}, as well as the first-stage estimate x t|t, 
runs a particle filtering procedure with a constructed suboptimal proposal distribution, 
and further produces a second-stage posterior estimate x f \  After a complete step, the 
master filter propagates its samples to the slave filter for the next iteration. Note that in 
the slave filter, no resampling is required, whereas the master filter runs resampling only 
if necessary. Essentially, the two filters are trying to solve the same filtering problem but 
looking at it from different perspectives; each one takes advantage of the result of the 
other at the previous step and thereby produces the solution in a cooperative way. Due 
to its similarity to Turbo decoding, we call the proposed filter structure as Turbo-particle 
filter (TPF). In what follows, we will derive the update equation mathematically in detail.

Let us write the filtering posterior in a slightly different way:

p(xt|y0:t) -  p(xt|yt,y 0:t_i)
p(yt|xt,yo:t-i)p (x t|y0:t-i)

Kyt|yo:t-i)
oc P(yt|xt)p(xt |y0:t-i). (5-24)

Next, suppose we can draw samples { x ^ }  from a proposal distribution, we need to find 
the importance ratios to appropriately weigh the samples. Using the importance sampling 
trick, we have

T„(i) p(yt|x?))p(xi*)|yo:t-i) , c ^
Wt ~ t (*) i \ ’ { }

where g(x^  |yt) is the proposal distribution. Assuming that at time t, we have Np simu
lated particles for approximating the posterior density of the previous time step:

N p

p(xt_1|y0:t- 1) ~  w S ^ X t- i  -  X&),
j=l

where W^}x are the normalized importance weights with the sum equal to unity. Hence, 
we have

p(xP|yo:t-i) =  J  P(x[l)|xf_i)p(xt_ i|y0:t_i)dxt_i

N p

«  X X H K x?  |x?Ji). (5.26)
3= 1
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Substituting (5.26) into (5.25) yields the importance weights update:

(5.27)

Now equation (5.27) naturally combines the prior and likelihood information, using pre
vious weights and samples as well as the most recent observation y t. The proposal distri
bution is suboptimal in the Lemma 5.3.2’s sense; it is only suboptimal in that it assumes 
a Gaussian approximation around the mean statistic. Using the Gaussian approximation 
proposal (from the EKF), we can draw samples {x[1̂ } from q =  N ( x t\t , Pt|t), where P t|t is 
obtained from (5.23). Finally, the master filter produces a (second-stage) mean estimate

=  E &  w i H l)-
In summary, a complete-step of Turbo-particle filtering runs as follows:

1. At time t, for j  =  1 , . . . , N p, given (obtained from the master filter in the previous 
step) and yt, run the EKF updates (for the slave filter) to calculate the approximated 
Gaussian sufficient statistics (xt|t, P t|t).

2. Draw Np samples {x[^ } from Pt|t).

3. For the master filter, for i =  1 , . . . ,  Np, calculate the importance weights via (5.27), and 
normalize them to get {W ® }.

4. Calculate the second-stage posterior estimate: xt =  fU ^ x^ .

5. Calculate Neff, if Ne/ /  < Np/ 2, perform the resampling (optional).

6. Copy the Np particles to the slave filter for the next step.

Remarks:

•  Although in the above discussion we use an EKF for the slave filter, there is generally 
no restriction regarding the choices of implementation. For instance, the slave filter 
can take a form of the unscented Kalman filter (UKF) or a Gaussian sum filter; 
likewise, the master filter can also use a more sophisticated proposal, such as the 
Gaussian mixture density.3

•  In contrast to the “mode-tracking gradient proposal particle filter developed earlier, 
TPF employs a “mode-shifting” scheme to construct the “support particles” around 
the first-stage EKF posterior estimate, which are more informative by using the

3This is trivial since at the stage of slave filtering one can just use previous N p samples to calculate 
the N p pairs of “mean-covariance” statistics with a bank of EKFs, and then draw samples individually 
from those N p pairs of Gaussians; in this case, the importance weights’ update is evaluated from (5.11).
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recent observation. The idea of the T P F  is close but not identical to the existent 
improved particle filtering schemes (e.g., Doucet, et al., 2000; deFreitas et al., 2000; 
Chen and Liu, 2000) in the literature;4 although they, in one way or the other, 
make use of the EKF updates, the essence and implementation (e.g., the importance 
weights update) of their ideas are utterly different.

•  Given a finite number of samples, the approximation of the p (x ^ |y 0;t-i) in (5.26) 
may be too crude (especially when Ej is small); hence it might be better to use a 
kernel estimator (Silverman, 1986) to smooth the prior.

•  The TPF is straightforward to implement. Compared to the conventional SIR filter, 
the complexity of the TPF is increased from 0 { N P) (excluding the (D(NP) resampling 
complexity) to 0 ( N p).5 However for the TPF, we argue that the required number of 
particles can be chosen to be smaller than that of the SIR filter for achieving a similar 
performance; on the other hand, the necessity of resampling (Step 5) becomes less 
frequent or even unnecessary since the weight degeneracy is no longer a problem; 
above all, the complexity increase may be justified by its improved performance and 
robustness. These will be all demonstrated in our later simulation experiments.

5.5 Sequential S tate E stim ation  in Tracking A ppli
cations

In this section, we investigate the above-studied Bayesian sequential state estimation tech
niques, particularly particle filtering in several tracking problems. The first two synthetic 
target tracking problems deal with the nonlinearity in the state-space models. The final 
tracking problem, being a real-life challenging task in wireless communication, deals with 
the non-Gaussian noise in the state-space model. As a comparison with the traditional 
Bayesian trackers (Kalman filter and EKF), we will see that our proposed particle filters 
yield a significant performance improvement in these tracking experiments.

5.5 .1  B earin gs-O n ly  Target Tracking

The bearings-only tracking is a classic nonlinear filtering problem and often serves as a 
benchmark for particle filters (Gordon et al., 1993). Let (ix, i>, 17,77) denote the positions 
and velocities of a target that is moving in the x  and y coordinate. The dynamic state- 
space model is described as

x f+i =  F x t +  C dt, (5.28a)
yt =  t&iC1 (r}t/u t) +  vt , (5.28b)

4In particular, the proposal distribution obtained from local linearization of state-space model (Doucet 
et al., 2000) is mostly close to ours.

5This is due to the need of calculating p(x^|x^_\).
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Figure 5.6: The distance between the target and sensor against the angle (bearing), 
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The observation is a noisy bearing (angle), and d t ~  A/"(0,0.0012I), vt ~  A/"(0,0.0052). 
The goal of filtering is to reconstruct the trajectory x0;t given the observed bearings yo:t and 
initial condition x 0 =  [—0.05,0.001,0.7, —0.055]T. The priors of particle filters are set up 
asp(x0) =  A/"(0, diag{0.052,0.0052,0.032,0.012}) and E[x0] =  [-0 .06 ,0 .0015 ,0 .65 ,-0 .05]T. 
Note that here the prior and likelihood are both peaked and that the variances of the states 
are of several orders of difference. In addition to the MSE, we also calculate another per
formance metric, the normalized MSE (NMSE):

NMSE = i £ ^ ,

which is basically the MSE metric normalized by the power of the state variables.

It was found that the tracking performance is sensitive to the initial conditions, es
pecially p(x0). Even with a large number of particles (say Np =  2000), if the variance of 
p(x0) is large, the divergence rate of particle filters is still very high. This is because if 
the prior is too broad, most of samples possibly fall outside the high likelihood region, 
which causes all of importance weights to be very small or negligible; in the extreme case, 
the denominator of importance weights Y^?=i will be close to zero. Specifically in
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Figure 5.7: Bearings-only tracking. Dot-solid line: true target trajectory in 25 steps; 
circle-dashed line: one estimate obtained by the SIR filter (left) and the gradient-proposal 
filter (right). The ellipse describes 95% confidence interval of the estimate. The origin 
indicates the sensor’s position.

this example, at the 14th step where the distance of target is closet to the sensor (see 
Figure 5.6), the estimation problem becomes most nonlinear and particle filters are mostly 
likely to degenerate (Gordon et al., 1993). To prevent the divergence, a Metropolis-move 
step, as described below, can be performed for the particle filter right after the resampling 
step.

•  Starting with any time step t, for i — 1, • • • , Np, proceed the following:

• Generate a uniform random variable u ~  U(0,1), and draw a sample x' ~  q(x^ \x ')  or 
from a random walk x ; ~  7V (x« ,E d);

•  Calculate the acceptance rate a(xW ,x') =  min

•  If u < a (x ^ \x ') ,  set XnL =  x', else XnL =  x^ ;

•  Repeat above steps and store Xnilo after 5 ~  10 iterations of “burn-in" time;

•  R eturn  th e  sa m p le s  { x ^ 2 iw }^ i-

First, we compare the proposed gradient particle filter with the conventional SIR fil
ter, with the same initial conditions, resampling scheme, and the same number of particles 
(Np =  100). It turns out that for the gradient proposal particle filter, the odds of diver
gence is less (1/50) than that of the SIR filter (3/50), the estimate of trajectory at the end 
is more accurate. This is because the gradient information provides some hints to prevent 
the filter from divergence. The selected Monte Carlo estimation results are illustrated in
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Table 5.3: Experimental results of bearing-only target tracking based on 50 Monte Carlo 
runs (excluding the divergence trials).

EKF SIR (Np =  100) SIR+gradient (Np =  100) TPF (Np =  30)
MSE 0.0026 0.0021 0.00014 0.00006

NMSE 0.0168 0.0150 0.0078 0.0009
divergence rate 0/50 3/50 1/50 0/50

B sir
SIR +gradiont

N  100 200 500
P

Figure 5.8: Performance (NMSE) comparison between the SIR and gradient proposal 
particle filters using varying numbers of particles, each based on 20 independent Monte 
Carlo runs.

Figure 5.7. The Monte Carlo average results of three filters in terms of one-step ahead 
prediction error is summarized in Table 5.3. For the EKF, no divergence is observed in 
50 trials, but its predicted as well as filtered errors (for both positions and velocities) are 
relatively very high (even with a perfect initial condition of x 0, it is still worse than our 
particle filters). The MCMC step was found to be helpful to prevent the occurrence of 
divergence.

The NMSE performance comparison between the SIR and gradient proposal particle 
filters with different numbers of particles, is shown in Figure 5.8. It is clear that the gra
dient proposal particle filter outperforms the normal SIR filter under different situations, 
the superiority is more evident especially with a small Np. In other words, with the same 
achieved performance, the gradient proposal particle filter requires fewer particles. As 
also expected, the difference between two algorithms gradually reduces as Np increases.

Next, we also compare the Turbo-particle filter (TPF) with the conventional SIR filter. 
In the experiments, we use Np =  30 particles for the master filter, for which resampling is
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Figure 5.9: Two Monte Carlo prediction results using Turbo-particle filtering for bearings- 
only target tracking.

conducted only if iVe/ /  <  Np/2. Since the state dynamics of this tracking problem is linear, 
we can calculate the state covariance matrix (without approximation) in the prediction 
step for the slave filter. In practice, we use a weighting coefficient, 0.1 <  A <  0.2, to 
balance the accuracy of the predicted state covariance: APt|t_i +  ( l — A)Pt|t_i, where P t|t_i 
denotes the calculated covariance value, whereas Pt|t_i denotes the covariance statistic 
from the samples. The Monte Carlo experimental results are summarized in Table 5.3 and 
illustrated in Figure 5.9. As seen in the Table 5.3, the TPF’s performance is significantly 
improved in terms of both MSE and NMSE compared to other filters, even with a small 
amount of the particles (less than one third of the number in other filters). Also, the 
TPF’s solution is obviously more robust, since no divergence rate was observed. This is 
not surprising because the EKF has provided a good first-stage estimate for the second- 
stage particle filtering;6 in fact, EKF is quite robust in terms of the divergence issue (see 
Table 5.3), although its prediction performance is much worse. By combing the features of 
the EKF and particle filter, as anticipated, TPF has yielded a very good performance for 
this bearing-only tracking problem. In addition, the variance of the importance weights is 
reduced, as evidenced by the curve of effective particle numbers illustrated in Figure 5.10. 
The reason why the TPF performs so well here is partially because (i) the state dynamics 
is linear, the EKF prediction is exact; and (ii) the state data region is small, therefore the 
linear approximation of the Jacobian is relatively accurate. We may expect that when 
these two conditions are violated, the TPF’s performance will degrade. In such a case, we 
might replace the EKF with a more robust UKF (Julier and Uhlmann, 2004) procedure, 
though in the above tracking example it did not make much difference for the same reason.

6This is particularly true for this bearing-only tracking problem by noting that the state dynamics is 
a linear Gaussian model.
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Figure 5.10: The Neff  curve of the master filter in Turbo-particle filtering, with Np =  30; 
the dashed line indicates the threshold value. Typically, the weight degeneracy problem 
is less severe compared to the conventional SIR filter.

5.5 .2  T arget Tracking w ith  C oord in ate  Turn

Next, we consider a typical target tracking through a coordinated turn (CT), where the 
state-space model is described by a stochastic differential equation (SDE) and approxi
mated by a second-order weak Taylor approximation. See (Morelande and Gordon, 2005) 
for detailed background. Let x t =  [&,?*, St,0t,u>t]T denote the state vector containing 
target position in x and y coordinate, target speed, heading, and turn rate. Under the SDE 
theory, the constant speed and turn rate (in the ideal CT model) will be instead modified 
as a Wiener process.

Specifically, the second-order Taylor approximation of the continuous-time state equa
tion is described as (Morelande and Gordon, 2005):

x t =  f(x T) +  G (xr)wt (5.29)

where 8 =  t  — r (we use 5 — 1 in discretization), and

f(x T)

G (xr)

(  £ t  +  8 s t c o s ( 0 t ) — 8 2s tu t sin(0r)/2 ^ 
gT +  8 s t sin(0r) +  5 2s tujt sin(0T)/2

ST
0 r  -f- S u jt

\  UT J
E(XT)V 5,
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Figure 5.11: One typical result (solid line: true trajectory; dashed line: predicted trajec
tory) in tracking with CT experiment using gradient proposal particle filter (Np =  500, 
RMSE=87.5).

with

E (x t ) =

crs cos(0T) 0 0 0
as sin(0r) 0 0 0

0 0 Oa 0
0 Ofjj 0 0
0 0 0 ouV

(  V^V3 0
V V35/2 Vs/2 *-2x2

where <g> denotes the Kronecker product; w t is a Wiener process approximated by stan
dardized white Gaussian noise W (0,I4X4).

The measurement equation consists of a “range-bearing” pair:

yt = +  v t (5.30)

where the Gaussian measurement noise v t ~  7V(0, Ev) is independent on the initial state 
and the Wiener process w t. The data trajectory was generated using the Euler ap
proximation with sampling period of 1 second and 1000 intervals per sampling instant. 
Measurements are collected for 200 seconds with a constant sampling period. The noise 
and initial parameter setup in our experiment is as follows: a 2 =  1/5, of, =  5 x 10~7,

92

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

Table 5.4: The RMSE performance comparison (based on 20 Monte Carlo runs) with 
varying number of particles.___________________________________

Filter No. particles, Np RMSE
SIR 500 144.3
SIR 1000 91.6
SIR 2000 81.9

SIR+gradient 200 142.3
SIR+gradient 500 90.2
SIR+gradient 1000 74.3

TPF 100 158.7
TPF 200 149.2

Ev =  diag{100, (71-/I8O)2}, x0 ~  A/"(/x0, E0) with

Mo -  [1000,2650,150, 7t/2 , - 7 t/ 45]t ,
E0 =  diag{400,400,25, (5tt/180)2, (0.2tt/180)2}.

Note that here the dynamic noise is peaked whereas the measurement noise is rather flat.

Table 5.4 shows the averaged RMSE (RMSE =  — | | 2 +  \q — <̂ |2) comparison between
the bootstrap filter (with prior proposal) and the SIR filter (with gradient proposal) and 
TPF, with varying number of particles. Figure 5.11 shows one typical tracking result. 
As anticipated and evidenced again, the gradient proposal particle filter outperforms the 
bootstrap filter with the same number of particles; and with less number of particles 
(Np =  100), TPF achieves approximately the same performance as the bootstrap filter 
(Np =  500).

5 .5 .3  M IM O  W ireless C hannel E stim ation .

In what follows, we apply the sequential Bayesian estimation technique for tracking fluctu
ations in the channel response of a narrowband multiple-input, multiple-output (MIMO) 
wireless communication system, using real-life recorded data. The channel response of 
the wireless channel is known to be time-varying (hence so called “fading channel”) due 
to the multipath effect during the propagation process, thereby presenting a challenge 
for reliable wireless communications (see e.g., Haykin and Moher, 2004). The motivation 
for channel tracking/estimation is to permit the use of a blind or semiblind strategy for 
acquiring knowledge of the channel matrix at the receiver, thereby improving the receiver 
noise performance of the MIMO wireless communication system. The work reported here 
is a challenging real-life problem and provide a testbed for different sequential channel 
estimation techniques.7

7This is a joint work with Kris Huber, and the following content is partially taken from a coauthored 
paper (Haykin, Huber, and Chen, 2004).
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Figure 5.12: A typical time snapshot of channel response for each of the four independent 
paths. Each curve illustrates the instantaneous magnitude (absolute value) of the channel 
fading gain at a particular time.

D ata . The real-life wireless channel data used in the succeeding experiments are the 
results of a survey of narrowband MIMO channel measurements collected in midtown 
Manhattan, New York city, January 2001.8 A narrowband channel sounder was built to 
measure the complex channel coefficients between a 16-element transmit antenna array 
and a 16-element receive antenna array. See (Haykin et al., 2004) for more details about 
the experimental data. A typical time snapshot for each path realization of a sample two- 
transmitter, two-receiver (Nt =  2, Nr — 2) MIMO system (a total of four independent 
paths) is given in Figure 5.12. The normalized time-Doppler rate was 0.01. Clearly 
the dynamic oscillations of these paths make tracking the wireless channel a challenging 
endeavor. Since we are simulating a 2-by-2 MIMO setup, each state vector contains a 
total of four individual paths, which correspond to a total of eight channel coefficients 
when considering both the real and imaginary components.

W ireless C hannel D ynam ics. First, let us consider the state equation. Assuming a 
memory span of p  blocks, the channel is approximated by previous memory that consists 
of an AR (p) model:9

v
%jk,n ~  ^  ̂Pl,n ĵk,n—£ T djk,n, fot j  1> 2, ' ■ • , ATr, k 1, 2, , iV) (5.31)

1=0

where the /3̂ n are time-varying autoregressive (AR) coefficients, and djk>n is the dynamic 
noise that drives the state equation. In effect, (5.31) describes the evolution of each scalar 
coefficient of a (constructive) channel matrix X n as an AR model of order p. Here, we

8This was a joint project between McMaster University and Bell Laboratories, Lucent Technologies.
9In order to be consistent with the common notations in communications, hereafter we use subscript 

n to denote the time index for both state and symbol variables.
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use a first-order AR model:10

%jk,n =  PnZjk,n—l ~t~ djk,n• (5.32)

where the AR coefficient fin is inferred from the Jakes ’ fading model, a well-established 
model for wireless fading channel (Jakes, 1974). The dynamic noise is modeled as a 
mixture of two nonzero-mean Gaussian components:

djk,n ~  8C(p, a 2) +  (1 -  (5)C(-/x, a 2). (5.33)

where C(/i, a 2) denotes a complex Gaussian distribution with mean p  and variance a 2. 
The choices of 8, as well as the noise statistics p  and a 2 in (5.33), were estimated off-line 
based on the real-life data at hand and fixed in the experiments. For detailed discussion 
and justification, the reader is referred to (Haykin et al., 2004).

Next, the measurement equation is described as

N t

Uj,n ^   ̂Sk,n3'jk,n T Vj>n for j  =  1,2, ■ , Nr (5.34)
f c = l

where Sk,n is the block of encoded symbols radiated by the /cth transmit antenna at time 
n, Vj<n is the measurement noise at the input of the jth  receive antenna at time n, XjklU is 
the channel coefficient from the /cth transmit antenna to the jth  receive antenna at time n, 
and yj>n is the signal observed at the input of the jth  receive antenna. The measurement 
noise we use is the Middleton Class A noise model, which has been used extensively to 
model the impulsive noise commonly generated in an indoor/urban wireless environment 
(Blackard et al., 1993; Wang and Poor, 1999). The probability density of this model is 
given by

p(v) =  (1 -  e)<C(0, g2) +  eC(0, ng2), (5.35)

where 0 <  e <  1. The first component C(0, g2) represents the ambient background noise, 
while C(0, Kg2) represents an impulsive component with probability e. By varying the 
parameters e and k  we can fix the total variance as a 2 =  (1 — e)̂ 2 +  eng2.

Channel and Sym bol Joint Estim ation. The proposed MIMO transceiver structure 
is shown in Figure 5.13. Binary source information is first mapped using 8-PSK (phase- 
shift keying) scheme and sent to the channel encoder. For the experimental purpose, we 
adopted a 2-by-2 antenna configuration using a popular coding scheme known as space
time block encoding (Alamouti, 1998). The encoded symbols sn are then transmitted over 
the wireless channel where they are attenuated by the channel matrix X n. On the receiver 
side, the Bayesian estimator is built around the channel codes being used. After a training

10Recent results (Huber and Haykin, 2004) have used a dynamic higher-order AR model for tracking 
improvement.
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Figure 5.13: A schematic block diagram of joint estimation (tracking-decoding) in a 
MIMO wireless system.

period that is used to initialize the filter, the prediction portion of the estimator updates 
the particles from the previous state estimate x ^ ix to the current predicted state estimate 
Xn*\ The mean state estimate x£ of the predicted particles is sent to the space-time block 
decoder (STBD), while the particles themselves are propagated to the filter portion of the 
receiver. The STBD then uses the mean channel estimate, as well as the received signal 
y n (from the receive antennas) in order to produce a coarse estimate of the transmitted 
symbols s„. The filter portion of the estimator then uses the predicted particles, along 
with the received signal and coarse estimate of the transmit symbols to produce new 
filtered versions of the particles xi'* as well as obtain a refined mean state estimate x£ 
of the channel. Finally, the refined channel estimate xjj and the received signal y n are 
processed by the STBD to give the ultimate symbol estimates of the transmitted symbols 
srn. The filtered particles, upon time delay r, are propagated again in the prediction of 
the channel state for time n  +  1.

Setup . The parameter values used for (5.23) and (5.24) were set as follows: (3 =  0.999, 
/ i  =  0.044, a 2 =  0.0039. We assumed that the fading rate remains unchanged (i.e., the user 
is moving at a constant speed), hence (3n is maintained at the same value for all time n. 
In order to demonstrate the improved performance offered by sequential channel tracking, 
we implement the Bayesian receivers under both (blind channel tracking and semiblind 
channel tracking) scenarios discussed in (Haykin et al., 2004). Finally, we show the results 
for the optimal case when the receiver has perfect channel state information; while this is 
an ideal case, it provides a meaningful lower bound for our receiver performance.

Perform ance A nalysis. First, we consider the performance of the Bayesian sequential 
Monte Carlo receivers under the blind channel tracking scenario. We consider several 
popular Bayesian receivers, namely, the Kalman filter, the mixture Kalman filter (MKF),
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Figure 5.14: Symbol error rate (SER) performance for blind channel tracking.

and finally the particle filters. For the MKF the number of Monte Carlo samples was 
empirically set as Np =  50. Simulation results showed little improvement for increasing 
Np, while it degraded notably for Np <  25. Compared to the common SIR particle filter 
using the prior as proposal, the particle filter including the gradient information into the 
proposal is referred to as gradient proposal particle filter. Finally, with blind channel 
tracking in mind, for completeness we plot the performance of a popular differential 
scheme, using the differential space-time block codes (DSTBC, Tarokh and Jafarkhani, 
2000).

In Figure 5.14, the SER of the receivers in the blind channel tracking case is given, 
which is calculated using 20,000 symbols. It is seen from Figure 5.14 that at low SNR 
only the particle filter is able to offer a comparable performance to that of the DSTBC. 
The degraded performance at lower SNR is owing to the fact that the Bayesian receivers 
must deduce the channel state based solely on their estimate of the transmitted symbols. 
At low transmit power, too many symbol estimation errors are incurred in order for the 
receiver to obtain a meaningful estimate of the channel, namely, they are suffering from 
a form of error propagation. However, as the noise power decreases, the error rate falls 
and then for the most part only correct decisions are reinforced.

It is clearly demonstrated that the Kalman filter is unable to maintain reliable tracking 
of the channel (i.e., it diverges due to excessive error propagation). Only as the noise power 
of the channel becomes reduced is the Kalman filter able to operate in a blind environment. 
Similarly, the MKF initially scores poorly; however, unlike the Kalman filter, the MKF 
does not diverge and its performance rapidly improves as SNR is increased. On the other 
hand, the gradient proposal particle filter does not suffer as much as the others. This is 
due to the feedback effect of the gradient technique. Since the gradient information is 
very efficient at placing particles in high likelihood regions of the posterior, it provides the

97

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

- a -  Conventional Method 
Kalman Filter 
Mixture Kalman 
Gradient Particle Filter (100P) 

—  Perfect CSI________________

to-1"

cctuco

SNR (dB)

Figure 5.15: Symbol error rate (SER) performance for semiblind channel tracking.

particle filter with a more accurate estimate of the channel. As can be seen in Figure 5.14, 
at medium SNR larger than lOdB, the gradient proposal particle filter is superior to that 
of the DSTBC, and by 13dB, the gradient proposal particle filter has beaten the DSTBC 
by a full 3dB.

Next we consider the performance of the receivers under the semiblind channel track
ing circumstance, in which, in addition to the data symbols, the receiver receives a peri
odic known symbol sequence. Here the transmitter sends one training block for every 10 
transmitted blocks (i.e., with a training ratio of 10%). As seen from Figure 5.15, the con
ventional receiver that assumes a static channel between successive training blocks clearly 
performs the worst. In order to improve the performance, it is necessary to increase the 
training rate (i.e. sending training sequence more often) or reduce the symbol constella
tion size. However, this is wasteful of both channel bandwidth and transmitted power and 
thereby not a desirable solution. On the other hand, the Bayesian receivers offer much 
better performance. Unlike the blind channel tracking, the inclusion of training symbols 
prevents all of the Bayesian filters from divergence. The Kalman filter is now able to track 
the channel, despite its poorer performance compared to the MKF and gradient proposal 
particle filter. In the semiblind scenario, it is observed that the gradient proposal particle 
filter performs the best among the Bayesian trackers. In fact, as the SNR approaches 
14dB, the gradient proposal particle filter is performing nearly as well as the optimal 
receiver, which assumes the perfect knowledge of the fading gains.

G radient A nalysis. Monte Carlo experimental results illustrating the performance 
gain in using the gradient information are shown in Table 5.5 and illustrated in Figure 5.16. 
In considering the curves in Figure 5.16, it is clearly evident that the benefit of the gradient 
technique is to dramatically reduce the number of required particles, while maintaining
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Figure 5.16: Symbol error rate (SER) performance curves for blind channel tracking.

a comparable performance to the SIR algorithm. For example at 12dB SNR and using 
10 particles, we can obtain a 2dB performance improvement over the SIR filter. In 
terms of SER comparison, it is seen in Table 5.5 that when the number of particles 
is less than 100, the gradient proposal particle filter obtains the same SER as the SIR 
filter, with only a quarter of the particles needed for the SIR filter. The reason for 
this dramatic improvement is due to the improved proposal afforded by the gradient 
information. The gradient proposal is significantly efficient in placing the particles in 
high likelihood regions, thus fewer particles are required to adequately reconstruct the 
posterior. It is also important to note that if the number of particles is large (see the 
rightmost column of Table 5.5), then the gradient information will offer little to further 
improvement. Once the state space has become over populated with particles (due to a 
large Np), the SIR filter, while being less efficient, may still place enough particles in high 
likelihood regions to adequately estimate the posterior. Thus the gradient scheme cannot 
improve on the best possible performance attainable by the SIR filter with a large number 
of particles; the merit of the gradient proposal particle filter is enhanced robustness, and 
significantly reduced level of complexity.

C om p lex ity  A n alysis . Due to the nature of sequential Monte Carlo sampling, it is 
difficult to obtain accurate expressions for run-time analysis of each tracking algorithm. 
While it is true that the complexity orders of the Kalman and particle filters can roughly 
be described as 0(N%) and 0 ( N pNx) respectively (Nx denotes the dimensionality of the 
state, and Np denotes the number of particles), these values are only approximate and 
offer little information as to their CPU run-time in a real system. For example, the form 
of the proposal, predictive model, resampling algorithm, as well as the number of Monte 
Carlo samples may have significant influences on the actual run-time of each algorithm. 
In an attempt to provide a fair comparison of all Bayesian trackers, each algorithm is
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Table 5.5: The MSE of wireless channel estimate and SER for various numbers of particles 
(at lOdB SNR) based on 100 Monte Carlo runs.

Number of 
Particles

SIR SIR+gradient
MSE SER MSE SER

10 0.0615 0.0681 0.0233 0.0353
20 0.0431 0.0460 0.0206 0.0305
40 0.0338 0.0387 0.0196 0.0291
100 0.0257 0.0301 0.0188 0.0275
200 0.0227 0.0285 0.0183 0.0272

normalized with respect to a single Kalman filter in terms of complexity and performance. 
The CPU time is calculated based on 1000 blocks of data; the Kalman filter is defined to 
have a complexity factor of unity. Then, an algorithm with a complexity of three, say, 
would take three times as long to process the same amount of data. Similarly for the 
performance measure, the Kalman filter is operated in the semiblind case at lOdB SNR 
as benchmark. Again, an algorithm showing better performance than the Kalman filter 
will have performance measure greater than one.

Figure 5.17 illustrates the complexity/performance trade-off between the three types 
of Bayesian receivers (the number in brackets after the receiver name represents the num
ber of Monte Carlo samples or the number of Kalman filter mixtures). As can be seen 
by the solid black bar in the figure, all the filters using Monte Carlo estimation produce 
similar performance. However, their complexities vary significantly. For example, the 
MKF has a run-time complexity of almost 30 times that of the Kalman filter, well above 
that of the other types of filters.

Returning to the influence of gradient information on overall performance, we see that 
the gradient proposal particle filter operating with 20 particles has a complexity factor of 
1.6 and a performance factor of 2.8. Comparing this to the common SIR filter using 20 
particles, we see the complexity factor is slightly less than 1.5, whereas the performance 
factor is only 1.8. Considering the complexity/performance trade-off, it is seen that using 
gradient information increases run-time complexity by only 6%, while providing a 36% 
increase in performance over the common SIR filter! Thus for a minimal increase in 
complexity we again see the benefit of the gradient proposal particle filter.

A  Further C om parison w ith  T urbo-P article F ilter. Finally, we also investigate 
and compare the performance of the early-developed Turbo-particle filter (TPF) in the 
semiblind channel tracking scenario. Similar to the earlier investigations, we used the 2-by- 
2 (two transmitters and two receivers) MIMO system; the channel fading (time-Doppler) 
rate is 0.01 (fast fading) in our experimental setup. To calculate the SER, we have used 
30 ~  50 particles for the TPF, while using 100 particles for both the conventional SIR and 
the gradient proposal particle filter. Since the state-space model here is linear and non- 
Gaussian, we essentially run the approximate Kalman filtering in the slave filter. Using
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Figure 5.17: The performance/complexity comparison for various Bayesian receivers. The 
number in brackets after the trackers represents the number of Monte Carlo samples drawn 
at each time instant.

10,000 QPSK symbols, the SER performance curves are shown in Figure 5.18 with the 
STBD. Compared with the SIR and gradient proposal particle filter, it is seen that the 
TPF produces equal or better performance with less number of particles.

It is noteworthy to mention that we have also tried a different decoding scheme in 
the experiments, such as the Vertical-BLAST (Bell Laboratories Layered Space-Time) 
[URL: http://www.bell-labs.com/project/blast/], or V-BLAST, another popular decoding 
algorithm designed for MIMO wireless communication (see e.g., Wolniansky et al., 1998; 
Haykin and Moher, 2004).11 Similar observations are found in the related experiments, 
see Figure 5.19 for the illustration. In the experiments, we used two transmit antennae 
and three receive antennae; the channel fading rate is also 0.01; a total of 20,000 QPSK 
symbols are used to calculate the SER curves (from 10 to 18dB). As seen again, with 
equal or less number of particles, the TPF has achieved better performance than the 
Kalman filter and the gradient proposal particle filter. With 100 particles, at low SNR 
the TPF almost reaches the lower bound of the ideal state (i.e., with the perfect knowledge 
of the channel). On the other hand, at high SNR the performance curves get flat and

11 As a rough comparison, V-BLAST often requires more receivers than the number of transmitters, 
and its performance is less dependent on the number of transmitters; it often works better in the high 
SNR scenario. In contrast, STBD often uses more transmitters than receivers, and its performance is 
less dependent on the number of the receivers; with sufficient number of transmitters, STBD can work 
reasonably well under a rather low SNR. With the same condition, STBD often achieves a lower SER 
than V-BLAST since it uses redundant data, whereas V-BLAST is more bandwidth-efficient; these two 
schemes illustrate the trade-off between the data redundancy and spectral efficiency.
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Figure 5.18: Symbol error rate (SER) comparison in semiblind channel tracking. The 
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Figure 5.19: Symbol error rate (SER) performance curves using TPF and V-BLAST in 
semiblind channel tracking. The number in the bracket indicates the number of particles 
in use.
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gradually deviate from the idea state. This “bottleneck” phenomenon (especially for high 
channel fading rate) is because at high SNR the measurement noise effect almost vanishes, 
and the state equation model (i.e., the AR model and dynamic noise) will dominate the 
performance; it can be imagined that if there is some model mismatch in the state equation 
(currently, we use fixed AR coefficient and fixed dynamic noise model), the performance 
will be still poor no matter how high the SNR is. This problem can somewhat be rescued 
using a dynamical higher-order AR model to track the time-varying AR coefficients (Kris 
Huber, personal communication); however, this is beyond our focus here.

In terms of computational complexity, the TPF is more costly than the conventional 
SIR filter as well as the gradient proposal particle filter. As a comparison with Figure 5.17, 
the relative performance/complexity factor of the TPF (using 30 particles) w.r.t. the 
Kalman filter is about 2.3/3. In contrast, the performance/complexity factor of the gra
dient proposal particle filter with 20 and 100 particles is 1.5/2.8 and 3.6/3, respectively; 
therefore, we pay the price of increased complexity for better performance. In light of 
j |  <  it is seen that we have an option for the complexity and performance
tradeoff: if the complexity and memory storage is the main concern, we may use TPF 
with a small number of particles; on the other hand, if the high performance gain is 
preferred, we choose a gradient proposal particle filter with a large number of particles.

5.6 D iscussion

In this chapter, we have presented a systematical overview of Monte Carlo methods for 
Bayesian estimation. For particle filters, choosing a good proposal distribution is pivotal 
to the ultimate performance. However, selection of the proposal distribution is often prob
lem dependent, choosing different proposals essentially leads to different particle filters. 
Although there is no general guideline regarding the selection of the proposal, we did find 
some heuristic and empirical observations from the experiments. In addition, in order to 
improve the basic bootstrap filter (using transition prior as proposal and ignoring the re
cent observation), we proposed two improved particle filtering schemes and demonstrated 
their potential merits in several tracking applications.

Our first improved scheme is based on the heuristics and can be viewed as a form of 
data augmentation. Using the gradient information from the measurement equation natu
rally utilizes the observation information and thus push the particles to the high-likelihood 
region. The implementation of this idea is simple, with only a slight computational com
plexity increase compared with the bootstrap filter. Surprisingly, the brute-force gradient 
proposal is quite efficient under various noise situations, especially in situations with a 
small Ev (compared with Ed). We have found that in the above-studied tracking experi
ments, the gradient proposal particle filter always outperforms the bootstrap filter using 
the same number of the particles; the difference is especially highlighted when the number 
of particles is small. In the wireless MIMO channel tracking case, we have seen that, in 
terms of relative complexity and performance gain (compared with the Kalman filter),
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the relative complexity factors of the SIR (with 100 particles) and the gradient SIR filters 
(with 20 particles) are 3.2 and 1.5, respectively; while their performance gains are 2.6 
and 2.7, respectively! This huge gain is rather significant when computational complexity 
issue is concerned in industrial practice.

Our second improved scheme is motivated from the Turbo decoding principle. The 
Turbo-particle filter (TPF) uses two important concepts for Turbo processing: feedback 
and divide-and-conquer. Through the feedback, the slave filter uses the most recent 
observation and further provides a one-step-ahead posterior estimate for constructing a 
Gaussian proposal for the master filter. By using the two-filter structure, the difficulty in 
constructing an optimal proposal distribution is broken into two parts, and each part is 
conquered by one filter. The two filters self-bootstrap iteratively and produce a suboptimal 
Bayesian solution. It should be cautioned that we have not claimed that the TPF always 
outperforms the conventional bootstrap filter. The performance difference between them 
might be very small depending on the estimation problem at hand. Given the simplicity 
of the latter, the bootstrap filter might be still favorable in some cases; on the other hand, 
in other cases (such as the linear dynamics with non-Gaussian noise, or partial Gaussian 
dynamics in either state or measurement equation), TPF might have its own advantage 
of variance reduction (since Kalman filter gradually reduces the state-error variance). 
The empirical observations we have evidenced might serve as a general guideline: when 
the variances Ed and Ev are both small, or either the state or measurement equation 
is linear, TPF usually performs quite well; when Ed is small compared to a larger Ev, 
the conventional bootstrap filter would produce a good performance given a sufficient 
number of particles; when Ed is flat compared to a peaked likelihood with a small Ev, 
the bootstrap filter usually is not efficient, and therefore other improved schemes (such 
as the auxiliary variable, or the gradient proposal) are often required to rescue.

Choosing different improved particle filtering schemes depends on the problem at hand 
as well as the prior knowledge of the dynamical and measurement noise. For instance, since 
the gradient proposal needs the calculation of the gradient (Jacobian) of the measurement 
equation, it is therefore more efficient for the nonlinear state-space model with linear 
measurement equation. On the other hand, since the TPF involves the EKF update in 
the slave filter, it can be imagined that if the state equation is linear and Gaussian, the 
state covariance matrix update can be replaced with the sample covariance estimate, and 
the computation is still exact; hence it is quite efficient for the nonlinear state-space model 
with linear state equation (e.g., the target tracking example).

Eventually, the issue of performance and complexity tradeoff of particle filtering is 
central: choosing a better proposal distribution (with more computation per step) might 
reduce the total memory storage and complexity (in terms of required particle number 
and the resampling frequency). In practice, we might design certain decision criteria for 
using different particle filters under different scenarios; in other words, we have to study 
the problem first and then choose a problem-specific filter.
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5.7 A ppendix: M O V E -Step A nalysis in G radient P ro
posal P article  F ilter

This appendix is devoted to examining the MOVE-step in gradient proposal particle filter, 
regarding the use of the observation and step-size parameter.12

For simplicity of analysis, let us first consider a linear Gaussian state-space model:

x t =  F x t_x +  dt, (5.36)
y t =  G xt +  v t, (5.37)

where the dynamical and measurement noises are uncorrelated, and d t ~  A/"(0, Ed) and 
v t ~  jV(0, Ev). Before propagating new particles, the gradient proposal particle filter 
moves each particle (say, x ^ x) to x ^  — r)£(y) according to the gradient MOVE-step,
where rj is a small step-size scalar, and £(y) denotes the gradient estimation:

? ( y ) = { v * ! y - G x |2} | _ , (5.38)
V ) lx—xt_1

with V x denoting the gradient operator. Now let us compare the performance of f (y t) 
and £(yt-i) (namely, using current and previous observations).

The success measure of the MOVE-step we use here is the L2 norm error between the 
target state and the particle state after the MOVE-step. Let us define

Error =  |xt_! -  x j^  +  ??£(y)|2

=  |xt_1- x 2 1|2 +  2 ^ (y )T(xt_ i - x 2 1) +  772̂ (y)T^(y). (5.39)

Thus, the MOVE-step can be considered beneficial if the error in (5.39) is smaller than 
|xt_i — x £ u |2; this occurs if

* ft(y )T« y )  <  - 2 < ( y ) T(x ,_1 -  x,®,). (5.40)

We rewrite the function £(y) of (5.38) in an explicit form:

« y )  =  V x (y Ty  -  y TG x® , -  ( G x & f y  +  (Gx<'21)T(G x® 1))

=  2GT(G x® 1- y ) .  (5.41)

C ase 1: W h en  th e  m easurem ent y  =  y t is used . In this case, we have 

£(yt) =  2GT(G x 2 1 -  G xf -  v t)

=  2G T ( G x <f l 1 -  G (F xt_! +  dt) -  v*)

=  —2Gt (G (F x t_i +  dt -  x^x) +  v t) . (5.42)

12The following content partially originated from the discussion and personal communication with Dr. 
Mark Morelande.
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Substituting (5.42) into (5.40), the criterion for improving the error performance becomes 

^G (Fxt_i +  d t — x ^ x) +  v t)  G G r ^G(Fxt_i +  dt — X(2i) +  v t  ̂|

< 4^G (Fxt_! +  dt -  x f i )  +  v t)  G (xt_! -  xJ2i). (5.43) 

Taking expectations over the dt and v t in both sides of (5.43) yields:

^{(Fxt-r -  x[l21)TH 2(F xt_1 -  x ^ )  +  tr((EdH +  Ev)h )

< (Fx*_i +  dt -  x i2 i)TH (xt_x -  xJ2i) (5.44)

where tr(-) denotes the trace of the matrix, and H =  G TG. The criterion of (5.44) can 
be further rewritten as

(xt—x -  x 2 i)T(»7H  -  I)H (xt_i -  x 2 x)

+T?tr((E dH  +  Ev)H )

+?7(Fxt_i -  x t_ i)TH 2(Fxt_1 -  x t_!)

+ (F x t_i -  x t_1)T(77H  -  I)H (xt_i -  x ^ )

+r)(xt-.l -  x 2 i ) TH 2(F xt_i -  x t_i) <  0. (5.45)

C ase 2: W h en  th e  m easurem ent y  =  y t_i is used. Similarly, we can derive the 
criterion for which the MOVE-step is considered to be beneficial:

(xt_! -  x & f f a H  -  I)H(xt_! -  X & ) +  ?ytr(EvH) <  0. (5.46)

Comparing (5.45) and (5.46), it can be seen that the error performance of the MOVE- 
step differs considerably from using current and previous measurement. While using the 
current observation, the error criterion will depend on the step-size, the bias between 
the true state and the particle state, and the covariance matrices of both dynamical 
and measurement noise. In the contrast, while using the previous observation, the error 
criterion will only depend on the step-size and the variance of the measurement noise; 
namely, it is independent of the bias between the true state and the particle state. As we 
expect, in some cases the error performance using current measurement is advantageous, 
but in certain cases it might also degrade the performance.

The following simple example (Mark Morelande, personal communication) tries to 
illustrate the difference between the above two cases. We consider an example where 
a target is moving in a one-dimensional axis with its noisy position as measurement. 
Let x t denote a two-dimensional (position and velocity) state vector and yt denote the
one-dimensional measurement, and

F =
' 1 
0

T  ' 
1 , Ed =  0.01 x ‘ T3/ 3 

T 2/ 2
T2/ 2 ' 

T

G =  [ 1 0 ] , Ev =  0.01,
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Figure 5.20: Top panel: the error criteria of using previous (solid) and current (dashed) 
observations for a positive bias in the particle state. Bottom panel: the error criteria of 
using previous (solid) and current (dashed) observations for a negative bias in the particle 
state.

where T =  1 is the sampling-time interval, and the true state is x t_i =  [5.0,1.0]T, and

H =  Gt G = 1 0 
0 0

Now let us plot the error criterion against step-size parameter p for the above two cases. 
Note that the gradient proposal is successful only when the error criterion is negative.

To distinguish the different behavior, we consider two situations,13 one for positive 
bias, and the other for negative bias existing in the simulated particle state x j^ . As illus
trated in the top panel of Figure 5.20, when x)_x =  [5.2,1.06]T and the bias (x)_j — x t_i) 
is positive, the performance of the MOVE-step with previous observation is improved 
(i.e., the error criterion is negative) and almost always successful for various choices of 77; 
however, the performance while using current observation in this case is unsuccessful no 
matter what p value is chosen. On the other hand, when x ^ x =  [4.8,0.94]T and the bias 
(x ^ j —x t_i) is negative, the performance of the MOVE-step using the current observation 
is better (for the small step-size p) and will degrade as steps-size parameter increases;14

13Here we have excluded the discussion on the situations where some components have positive biases 
and the others have negative biases; but the general conclusion is similar.

14This also illustrates the reason why in practice we always let the step-size parameter be a small-valued 
scalar.

107

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

In contrast, the performance while using the previous observation, as expected, is inde
pendent on the bias, and therefore almost always successful for small step-size. This is 
illustrated in the bottom panel of Figure 5.20.

Therefore, we can conclude that when the MOVE-step is conducted before the sampling- 
step, we should use previous observation, and when the MOVE-step is conducted after the 
sampling-step, we should use current observation. Namely, in calculation of the gradient, 
we shall use y t_i for simulated particles x ^ x, and use y f for

G eneralization  to  N onlinear E stim ation  Problem . For the nonlinear and/or non- 
Gaussian state-space model, the above results can not be applied exactly, but the discus
sion still approximately holds under the assumption that the tracking error is relatively 
small by replacing F and G by the corresponding Jacobian matrices computed for the 
target state at time t — 1.

For illustration purpose, let us consider a one-dimensional nonlinear state estimation 
problem (Gordon et- al., 1993):

where xo =  0.1, dt and vt are zero-mean Gaussian white noise processes with variances 10 
and 1, respectively. The initial condition is set up as {x ^ }  ~  jV(0.1, 1).

Given (5.48), we can calculate the Jacobian to approximate the measurement matrix 
G of (5.37), as well as H — G TG and the gradient £(yt):

G t =  xt! 10,

25x
xt =  0.5xt_i +  +  8cos(1.2(t -  1)) +  dt , (5.47)

xt
Vt =  7 ^ + V t , (5.48)

H t =  G f G t =  x2t / m ,

&vt) =  ~ h xt(yt ~  xt / 20)-

Substituting G t and H t into (5.46) yields the corresponding approximate criterion for the 
nonlinear state-space model:

(xt -  x f ))T(?7H t -  I)H t(xt -  x tW) +  7?tr(£vH t) <  0. (5.49)

For the above one-dimensional problem, we can simplify (5.49) as

(xt -  xtW)2(?7lO 2x2 -  l)x 2 +  px2 <  0. (5.50)

If px2/ 100 -C 1, then the condition (5.50) becomes that given xt ^  0,

(xt -  x ^ ) 2 > p, (5.51)
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Figure 5.21: Top panel: the true state (solid) and the particle filter estimates (using 100 
particles) in the one-dimensional nonlinear state estimation problem. Bottom panel: the 
comparison of state estimate error (absolute value) between without and with the gradient 
MOVE-step (under the same conditions).

or

\x, -  z® | >  V5j. (5.52)

Equation (5.52) provides a stepsize-dependent bound, which, in turn, suggests that using 
a small step-size provides a higher-chance of success in the gradient MOVE-step. Our 
Monte Carlo simulation result (see Figure 5.21 for an illustration) also confirmed the 
empirical analysis.
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Chapter 6

M onte Carlo Sam pling-Based  
ALO PEX Algorithm s

“Learning without thought is useless, thought without learning is dangerous. ”

— Confucius

6.1 S tate-Sp ace M odel for P aram eter E stim ation

In Chapter 5, we have seen that the state-space model serves a principled tool for sequen
tial state estimation. In this chapter, we will recast the parameter estimation problem into 
the same framework in order to accommodate sequential Monte Carlo methods. For the 
purpose of exposition simplicity, we focus on the parameter estimation problem in a su
pervised learning framework; but the discussion also generalizes to unsupervised learning 
or generic optimization problem.

Let us formulate a generic parameter estimation problem in the form of a state-space 
model:

where the nonlinear measurement equation, parameterized by 9, determines the mapping 
f  : X  Y ,  given a number of inputs x t and outputs y t. The additive terms u t and v t 
are dynamical noise and measurement noise, respectively. In our case, /  can be a neural 
network, or a certain parameterized model.

In the sequential Monte Carlo estimation framework, 0 t is estimated via particle 
filtering that follows a recursive Bayesian estimation procedure (see Chapter 5). Simply 
put, a particle filter uses a number of random samples called “particles”, sampled directly 
from the state space, to represent the posterior, and updates the posterior by involving

9t+i — 9 t +  v t , 
y t =  / ( 0t ,xt) +  vt,

(6.1a)
(6.1b)
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the new observations; the “particle system” is properly located, weighted, and propagated 
recursively according to Bayes’ rule.

Among many variations, one of the most popular particle filters is the SIR filter 
(Gordon et al., 1993); we will focus on the SIR filter in the rest of the chapter. As 
discussed in Chapter 5, a notorious phenomenon of the SIR filter is the weight degeneracy 
problem. To monitor the number of the effective samples (denoted as N ej j ) ,  one empirical 
measure of sample efficiency is the variance of the importance weights. Besides that, 
we also suggest (Chen, 2003a) another efficiency measure based on the Kullback-Leibler 
(KL) divergence between the proposal and target densities, denoted by D(q\\p). Given 
Np samples drawn from the proposal q, the KL divergence D(q\\p) is approximated by

1 Np

=  - j v - E 1° 8(M,(0W))' <6-2>
P  i = 1

where 0 ^  ~  <?(#)• When q =  p  and W (0 ^ )  =  1 for all i, D(q\\p) =  0. Since D(q\\p) >  0, 
— log(W (0^)) should be non-negative. In practice, we instead calculate the logarithm 
of the normalized importance weights N kl =  —7̂  )Ci=u l°g(W (0^ )) ,  which achieves the 
minimum value N ^  =  log(Np) when all W {0 ^ )  — 1/Np. Our previous studies have 
confirmed that NKL is a good measure that is also consistent with Neff' when TVkl is 
small, Neff is usually large; and vice versa.

6.2 Sam pling-B ased  A L O P E X  A lgorithm s

In what follows, we propose two novel sampling-based ALOPEX algorithms by combining 
ALOPEX-B and a sequential Monte Carlo estimation technique. The algorithms are 
recursive and fall under the Bayesian estimation framework. Like the ALOPEX-like 
algorithms, they are gradient-free, and they are suitable for either on-line (sequential) or 
off-line (batch) learning.

Note that equation (6.1a) uses a random-walk model. In order to avoid the “blind” 
random walk behavior, we employ a “relaxation” model (Mackay, 1998) in place of (6.1a):

e t h  =  Mt +  a t0 'i' ~  Mi) +  V l -  A x i  (6.3)

where W ^ e f -  the noise vector v t is standard Gaussian-distributed: ut ~
A/"(0,I), and a  is the standard deviation controlling the degree of variation in 0 , which 
often requires some prior knowledge of the problem. The relaxing parameter a  € [—1,1] 
controls the degree of over-relaxation (or under-relaxation):
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•  when a  — —1, (6.3) reduces to an extreme over-relaxation O^h =  2 /it — 0^ ;

•  when a  =  0, (6.3) reduces to a random walk 0 ^  — fxt +  a u t;

• when a  =  1, (6.3) reduces to a stationary point 0 ^ x =  0**\

In summary, our first sampling-based ALOPEX algorithm (termed Algorithm-1 here
after) proceeds as follows:

1. For i =  1, • • • , Np, in itialize 0^  ~  p(6o), =  1 /Np.

2. Predict 0 ^  from  (6 .3 ) .

3. U pd ate th e  sam p les 0 ^  v ‘a th e  m odified A L O PE X -B  algorithm  (2 .2 3 )  through (2 .2 5 ).

4. Evaluate im portance w eigh ts =  W ^ l\p (y t |0 j l \  x t )  and ^ — ^y.
X3=i wt

5. C alcu late Nef f  and IV k l, if Nef f  > 0 .8 Np or A k l  >  3 1 o g (A p), g o  to  s tep  7; o therw ise go  
to  s tep  6.

6. (S y stem a tic ) R esam pling: gen erate a new  particle se t  { 0 ^ }  and reset th e  w eigh ts = 
1 /Np.

7. R epeat s tep s  2 through 5.

Note that when Np =  1, Algorithm-1 reduces to a generalized form of ALOPEX-B, 
which involves an additional randomness through (6.3). In addition, there is no reason 
why we cannot use specific for different 0 ®; a  can also be time-varying, but we have 
not investigated these issues here. We fixed a  for each specific problem in the experiments 
reported later, but the optimal a  often varies from one problem to another.

It is of interest to compare our algorithm with other sampling-based optimization al
gorithms, e.g., Fisher-scoring (Briegel and Tresp, 1999) and HySIR (deFreitas et ah, 2000; 
deFreitas, 1999) for training neural networks. The complexity of our algorithm (G(NPN )) 
is much smaller than these two algorithms (0 ( N pN 2)) simply because of avoiding the 
calculation of the Jacobian matrix. Our algorithm is also much simpler than another 
sampling-based gradient-free estimation technique: the unscented particle filter (UPF), 
which is typically of 0 ( N pN 3) complexity (van der Merwe et ah, 2000; Wan and van der 
Merwe, 2001).

We next propose another sampling-based ALOPEX algorithm (hereafter termed as 
Algorithm-2) that is motivated by the hybrid Monte Carlo (HMC) method (Duane et ah,
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1987; Mackay, 1998). The idea of HMC is to augment the state space 0  with a momentum 
variable p. The energy-conserving Hamiltonian dynamics is defined as:

H (e ,p )  =  E{0) +  lC(p), (6.4)

where E{0)  is the potential energy function, whereas JC(p) =  p Tp /2  is the kinetic energy. 
The samples are drawn from the joint distribution

Pn(6 ,P ) =  ^ e x p  ( - H ( 0 , p ) )

=  -^ ex p (-E (0 ))ex p (-/C (p )), (6.5)

where Z  is a normalizing constant. Note that the term exp(—A (0)) is essentially the 
likelihood up to a normalizing factor. The momentum dynamics can be approximated by 
the ensuing difference equations

p t — V 0t «  A 0t (6.6a)
d E (0 t) A  E (0 t)

V ft =  “ 5 s r “ — s s r -  (6-6b)

where, obviously, all of the terms are intermediate results obtained from the ALOPEX- 
like algorithm without additional computing overhead. By doing so, the posterior of 6 t+\ 
is proportional to p(0t+1\0t)pH(0t , p t) =  p(0t+1\0t) e x p ( - |p f p t)p(yt|0t). Equivalently, 
while keeping the importance weights proportional to the likelihood, (6.3) is changed to

§ 2 ,  =  e f l  +  p & e f '

=  Ml +  a ( 6 [ ' ! -  Ml) +  +  V'l -  a V i/t, (6.7)

where (5 is a momentum coefficient. Equation (6.7) essentially describes a second-order 
auto-regressive (AR) model compared to the first-order models (6.1a) and (6.3); it also im
plies that p(0t+i\0t , A 0 t) oc p(6t+i\0t) exp(—A d j A 0 t). Algorithm-2 differs from Algorithm- 
1 only in the second step where (6.3) is replaced by (6.7).

Remark: It is noteworthy to comment that although the above two sampling-based 
ALOPEX algorithms are discussed in the supervised learning framework, they can read
ily be used for unsupervised learning, in which the likelihood function is related to the 
specified objective function.

6.3 Training N eural N etw orks

6.3 .1  N etw ork  A rch itectu res

Feedforward netw ork: Typical examples of this type include the multilayer perceptron 
(MLP) and radial basis function (RBF) network.
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(a) O

(b) O

(c) O

(d)

(e)

Figure 6.1: A schematic diagram of different network architectures, (a) a time-delay 
feedback from output to hidden nodes; (b) a time-delay feedback from hidden to hidden 
nodes; (c) a self-feedback in hidden node with no time-delay; (d) a densely-connected 
architecture; (e) a feedforward multilayer architecture with short-cut connections.

R ecurrent netw ork: There exist different kinds of recurrent networks depending on the 
structure of feedback connections, either locally-recurrent or fully-recurrent:

• Elman network (Elman, 1990): with time-delay feedback from hidden nodes 
to hidden nodes. The time-delay hidden outputs are stored in the so-called 
context units, which can be viewed as an augmented set of input nodes.

• Jordan network (Jordan, 1989): with time-delay feedback from output nodes to 
hidden nodes. The time-delay network outputs are likewise stored in the con
text units. Elman and Jordan networks are the most popular locally-recurrent 
MLP (RMLP) models.

•  Self-feedback network: with feedback from hidden nodes to hidden nodes, but 
no time-delay. An example of this type is the echo state network (Jaeger, 2001; 
Jaeger and Haas, 2004).

• Hopfield network (Hopfield, 1982): with fully-connected recurrent feedbacks 
except the self-feedback.

H ierarchical netw ork: Examples of this type often include the fully connected network, 
or the network with cross-layer or short-cut connections, or the network with specific 
modular or template structure, such as the convolutional neural network (LeCun 
et al., 1998).

A schematic diagram of some exemplar network structures is shown in Figure 6.1. Note 
that the gradient-based optimization procedure for hierarchical or recurrent networks, 
such as back-propagation through time (BPTT) or real-time recurrent learning (RTRL), 
is relatively sophisticated and often requires special treatment for different network archi
tectures.
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6 .3 .2  B enchm ark  P rob lem s

For comparison, the following five benchmark problems: XOR, p a r ity , encoder-decoder, 
encoder, and decoder, taken from (Unnikrishnan and Venugopal, 1994; Bia, 2001), are 
used for MLP networks training; and the other three benchmark problems: seq u en tia l 
XOR-D, d e la y -D , seq u en tia l p a r ity , taken from (Bia, 2001), are used for (Elman- 
type) RMLP networks training. The main purpose of these benchmark experiments is 
to compare the convergence speed between the ALOPEX-B algorithm (Bia, 2001) and 
our developed sampling-based ALOPEX algorithms. We only compare our algorithms 
with the ALOPEX-B algorithm simply because we also found that it converges faster 
than its counterpart (Unnikrishnan and Venugopal, 1994). In these tasks, no testing 
(generalization) error is measured; the network architecture are chosen by heuristics.

All of the benchmark tasks are performed in an off-line learning fashion. For the 
ALOPEX-B algorithm, no exhaustive effort was made to find the optimal parameters 77 
and A; we used the recommended values as (Bia, 2001) in our experiments. { 0 ^ }  are 
uniformly distributed within the region [—1.5,1.5].1 Once 0^(0) is generated, an initial 
Gaussian prior J\f(6j(0), 0.5) is used for generating the samples {6 ^ }. The error measure 
is the mean-squared error (MSE):

£ = 5 X i i y < - y < u 2- <6-8)
t=1

For the sampling-based ALOPEX algorithms, we only monitor the minimum MSE among 
all {0 ^ }; the one achieving minimum MSE is regarded as the maximum, a posteriori 
(MAP) estimate. The typical parameter setup is as follows, although the optimal choices 
are problem-dependent: (i) relaxing parameter a  G [—0.5,0.2]; (ii) step-size parameter 
7  =  —0.01; (iii) learning rate rj G [0.05,0.1]; (iv) momentum coefficient /3 =  ck/10; (v) 
forgetting factor A G [0.1,0.5]; (vi) standard deviation of noise a  G [0.01,0.02]. The 
number of particles for these tasks are set as Np =  10, unless stated otherwise.

The optimization results are summarized in Table 6.1. As seen in the table, the 
proposed sampling-based ALOPEX algorithms outperform the (modified) ALOPEX-B 
algorithm for all of the benchmark problems in terms of convergence speed. As expected, 
the Algorithm-2 performs slightly better than the Algorithm-1. These results indicate 
very clearly a performance-complexity tradeoff for the algorithmic design.

6 .3 .3  P a tte r n  R eco g n itio n

D ig it R ecogn ition . First, we consider a toy pattern recognition problem for 10 binary 
(black and white) digit classification. The synthetic data are shown in Figure 6.2, where 
each digit is represented as a 35-bit 7 x 5  array. An MLP network with architecture

*By using this region, we implicitly assume that the input data are properly normalized within the 
region [0,1]; or equivalently, if the input data is within the region [—1,1], then 6q G U {0,1.5).

116

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

PhD Thesis — Zhe Chen McMaster University — Electrical and Computer Engineering

Table 6.1: Experimental results of the benchmark problems. The numbers are the aver
aged (based on 20 Monte Carlo simulations) and minimum epochs for achieving a training 
error MSE =  0.001; no testing error is calculated in these problems.______________

Problem network ALOPEX-B Algorithm-1 Algorithm-2
size ave. best ave. best ave. best

X0R MLP2-2-1 7568 1333 1008 845 879 633
encoder-decoder MLP4-2-4 4080 2657 2138 1749 1906 1734

parity MLP4-4-1 65372 25519 5589 5240 5467 4546
encoder MLP8-3-3 2594 2139 1402 1059 1374 926
decoder MLP3-3-8 24220 10126 4951 4428 4848 4430
Delay-1 RMLP1-2-1 1210 1108 451 412 382 334
Delay-2 RMLP1-3-1 5031 4291 1922 1581 1309 1101
Delay-3 RMLP 1-4-1 596 356 239 201 215 149

sequential XOR-O RMLP 1-2-1 6985 6235 3531 2946 3013 2511
sequential X0R-1 RMLP 1-4-1 7032 6323 3155 2843 2983 2325
sequential XOR-2 RMLP1-6-1 11323 10832 7932 7059 7251 6501

sequential parity RMLP 1-3-1 13138 11098 7832 7031 7238 6235

net35-5-4 is used for training; no model selection procedure (for hidden units) is under
taken here. With the common MSE metric, a 100% classification rate is achieved for the 
10 training samples after the MSE value approaches 0.01. The optimization curves of 
the ALOPEX-B, modified ALOPEX-B, and sampling-based ALOPEX (Algorithm-2) are 
shown in Figure 6.2. In order to test the generalization and robustness, we add different 
amount of Gaussian noise into the the training patterns and reexamine the correct classi
fication rate; it is found that the network’s performance is noise-tolerant within 5% white 
noise, beyond that misclassification occurs.

Next, we consider a more challenging gray-level digit recognition problem, where the 
real-life data were obtained from the USPS database and further preprocessed appropri
ately. Each sample represented as an 8 x 8 pixel image (Figure 6.3); for each class, 400 of 
them are used for training set, 300 of them for validation set, and the rest 400 of them for 
testing set. A total number of 10 x 1100 =  11000 samples are used in the experiments. 
We use the sampling-based ALOPEX algorithm to train an MLP net64-8-4. As antic
ipated, the convergence of learning is slow (Figure 6.4) due to a large amount of data. 
Upon completion of training (for approaching MSE=0.02), the network achieves 4.83% 
and 15.1% misclassification rates for the training and testing data, respectively.

T w o-Spiral C lassification . Finally, we consider a two-spiral classification problem, 
which is known as a hard optimization problem due to its complex classification boundary, 
as illustrated in Figure 6.5. The data consist of two intertwined spirals with a total 194 
training samples. Our early investigations of using a simple MLP network trained by 
conventional back-propagation or ALOPEX algorithm confirmed previous observations of
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67890

-  -  sampling ALOPEX

Figure 6.2: Left: binary digits. Right: optimization curves of three algorithms starting 
with the same initial conditions.

other researchers (Lang and Witbrock, 1989; Fahlman and Lebiere, 1989).

Here we use a fully-connected network with an architecture net2-5-5-5-l (see Fig
ure 6.5), which has cross-layer connections. This kind of network was early proposed by 
(Lang and Witbrock, 1989) trained with back-propagation; but it can be imagined that 
the calculation of the back-propagating error and derivatives is rather sophisticated. For 
the optimization purpose, we use the sampling-based ALOPEX algorithm (with Np =  30 
particles) in place of the conventional back-propagation algorithm. Different kinds of ob
jective functions are investigated. The first is a regularized MSE metric with a “weight- 
decay” term:

£ <e ) =  5 f S > ‘ - » H 2 +  AM 2' <6-9>
1= 1

with a small-valued regularization parameter A; and the second takes a form of the cross
entropy (Hinton, 1989; Bishop, 1995):

t
E (0) =  ~  Vi) iogt1 -  ft)i (6-10)

i=l
or its modified form:

1 1 -  
E(G) +  yi) log-— I1. (6.11)

The difference between (6.10) and (6.11) is that the minimum of (6.11) is zero, whereas
(6.10) has a nonzero minimum. See (Bishop, 1995) for discussions on the properties of 
these objective functions in pattern classification.

The misclassification rates obtained from using (6.11) are 2.4% and 1.8% for train
ing and testing data, respectively. In contrast, an MLP net2-25-l trained by the same
algorithm using (6.9) achieves 9.3% misclassification rate.
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Figure 6.3: Selected training digit samples used in the experiments.
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Figure 6.4: Learning curve for gray-level digit recognition.
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Two-Spiral Problem
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Figure 6.5: Left: two-spiral patterns. Right: network architecture.

6 .3 .4  O p tion  P rices P red ic tio n

In the past decade, connectionist models such as MLP and RBF networks, have been used 
successfully in financial time series forecasting and analysis (see e.g., Hutchinson, 1994; 
Hutchinson et al., 1994). The financial data (e.g., stock exchange, interest rate, foreign 
exchange, etc.) are known as nonlinear and non-stationary, thus providing a good testbed 
for neural network modeling and prediction.

The real-life financial data used here consist of five pairs of call and put option con
tracts on the FTSE100 index (daily close prices from February 1994 to December 1994).2 
The accessible data include strike prices, call option prices and put option prices. 3

In the literature, the classic Black-Scholes formula was proposed for the call option 
price (Black and Scholes, 1973):

C  =  f {S ,  X ,  T) (6.12)

where C  is the call option price, T  represents the maturity time, and S  and X  represent 
the stock (asset) price and the strike (exercise) price of the option, respectively. The form 
of parametric function /  often depends on specific underlying asset and the market. In 
reality, the call option price data are inherently generated from complex and stochastic 
dynamics, which rely on many factors that introduce various kinds of noise to the data.

2The experimental data and the HySIR code are downloaded from the webpage of Dr. Nando de 
Freitas: http://www.ubc.ca/~nando/.

3Knowledge background (deFreitas, 1999): A derivative is a financial instrument whose value replies 
on some basic cash product. An option  is a particular type of derivative that gives the holder the right 
to do something. For example, a call option allows the holder to buy a cash product at a specified date 
in the future. The price at which the option is exercised is known as the strike price, while the date at 
which the option lapses is referred to as the m aturity time. A put option  allows the holder to sell the 
underlying cash product.
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Table 6.2: Comparative experimental results of option pricing prediction. The values are 
averaged one-step prediction MSE based on 20 Monte Carlo runs with different initial 
random seed s.______________________________________________________

Strike price 2925 3025 3125 3225 3325
ALOPEX-B 0.2891 0.2231 0.1921 0.1837 0.1071
Algorithm-1 0.0403 0.0404 0.0383 0.0352 0.0242
Algorithm-2 0.0399 0.0395 0.0366 0.0310 0.0231

EKF 0.0408 0.0396 0.0401 0.0307 0.0215
HySIR 0.0389 0.0379 0.0369 0.0293 0.0194

t°*
5  0.4

ISO
Time index

250
Time index

Figure 6.6: Call and put option prices prediction curves (left: strike price data 3125; 
right: strick price data 3325) produced by Algorithm-2 in one Monte Carlo trial. Solid 
line: true value; dotted line: predicted value.

Due to this reason, the Black-Scholes parametric model often suffers from the violation of 
the underlying assumptions, such as lognormality or sample-path continuity; it is also not 
robust to the colored (correlated) noise. The nonstatonarity of the financial data often 
necessitates sequential tracking, which requires that the model be updated correspond
ingly on-line. This is in contrast to the common approach that uses a fixed-weight neural 
network for the out-of-the-sample data, assuming a suboptimal network being trained 
off-line given sufficient training data set. Our approach here does not impose such a re
striction, although a pretrained network (including model selection) with off-line data set 
will be intuitively helpful.

In the sequel, two different approaches to the problem of option prices prediction are 
investigated.

G e n e r ic  approach.  In a generic approach, we use a time-varying nonparametric model 
(MLP network) to track the stochastic dynamics. We use strike price X  and maturity
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Figure 6.7: Scatter plot of C / X , S / X ,  and normalized maturity time T  for strike price 
data 3325.

time T  as two inputs (with appropriate normalization preprocessing) feeding an MLP 
with architecture net2-6-2 (two inputs, two outputs, and six hidden units), where the 
two outputs correspond to the call option and put option prices. We have tried different 
options data and compared our algorithms with the conventional extended Kalman filter 
(EKF) and HySIR algorithms (deFreitas et al., 2000). The specific parameters for this 
task are: a  =  0.8, a  =  —0.7. Using Np =  50 particles, the Monte Carlo average results 
are summarized in Table 6.2. Generally, when the number of particles is increased, the 
prediction performance is also improved. The prediction curves (of one trial) of call and 
put option prices for the strike price data 3125 and 3325 with Algorithm-2 axe shown in 
Figure 6.6, respectively. As seen from the figures, the sampling-based ALOPEX algorithm 
produces a reasonable tracking trajectory of the highly non-stationary price data, though 
the exact prediction results are not very accurate.

From Table 6.2, it is observed that the modified ALOPEX-B algorithm fails to track 
the sequential data; the performance of sampling-based ALOPEX algorithms is signifi
cantly better than ALOPEX-B, close to or slightly better than EKF, and slightly worse 
than the HySIR algorithm. Under the same conditions, the HySIR algorithm’s algo
rithmic complexity (0 (A rpA 2Acmt), where Nout denotes the number of the MLP output 
neurons (deFreitas et al., 2000)), however, is much greater than that of our algorithms 
('0 ( N pN )). In terms of CPU time, our algorithms need slightly more time per step than 
the EKF for this task. Nevertheless, it is expected that when the size and structural 
complexity of the neural network are increased, our algorithms may exhibit more com
putational advantage. It may thus be said that our proposed sampling-based ALOPEX 
algorithms provide a good trade-off between performance and computational complexity 
for tracking the option prices tendency. In addition, they are also amenable to parallel 
implementation.
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Figure 6.8: The C / X  prediction curve (for strike price data 3225) produced by Algorithm- 
2. Solid line: true value; dotted line: predicted value.

D a t a - d r i v e n  approach .  In terms of financial data prediction, it is often beneficial to 
explore the structural properties of the data, even if the data are of limited size. For the 
financial data at hand, we also investigate data-driven predictive model. Under certain 
assumptions, (6.12) can be simplified by normalizing the call option price C  and stock 
price S  by the strike price X;  in particular, we have4

C / X  =  f ( S / X , T ) .  (6.13)

The correlation analysis between C / X  and S / X  and normalized T  is shown as a scatter 
plot in Figure 6.7. In the data-driven approach, we use an MLP net2-4-l to model the 
dynamics (6.13) and test the tracking performance of Algorithm-2. Using 50 particles, 
one prediction curve for the call option prices is shown in Figure 6.8. Compared to the 
generic approach (see Figure 6.6), the data-driven approach appears to produce more 
accurate prediction results.

6 .3 .5  S y stem  Id en tifica tion

In the following, we will test the sampling-based ALOPEX algorithms for the system 
identification problem (Ljung, 1999; Sjoberg et al., 1995; Johansson, 1993). The purpose 
of the experiments is to illustrate the suitability of the proposed algorithms for an on-line 
“black-box” (neural network) modeling approach. See Figure 6.9 for an illustration.

R ob ot-A rm  D yn am ics. Let us consider a two-link robot-arm system, which is illus
trated in Figure 6.10; the solid and dashed lines in the left panel of Figure 6.10 show the

4Theoretically, this normalization is valid at least when the stock returns are independently distributed 
(Hutchinson, 1994).
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Figure 6.9: Block diagram of system identification using a black-box modeling approach.
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Figure 6.10: Left panel: Two-line robot arm. Right panel: predicted trajectories (dotted 
line).

“elbow up” and “elbow down” situation, respectively. For a given pair of angles (ai,a!2), 
the end-effector position of the robot arm is determined, whose system is described by 
the Cartesian coordinates:

yi =  ri cos(ai) -  r2 cos(o!i +  a 2), 
y2 =  n  sin(o:i) -  r2 sin(a:i +  a 2),

where rx =  0.8, r2 =  0.2; a x 6 [0.3,1.2] and a 2 G [7r/2, 37t/2]. Finding the mapping 
from .(a i,a2) to (y i ,y2) is referred to as forward kinematics. Reformulating the system 
dynamics in a state-space form so as to obtain sequential data for the problem at hand, 
we may write

Xt+l

y  t

h(xt) +  w t,
cos(aM) -  cos(ai,t +  a 2yt) 
sin(a:lit) -  sin(ai)t +  a 2<t)

T\
. r2 .

+  v t ,

(6.14a)

(6.14b)
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Figure 6.11: Top panel: input sequence. Bottom panel: original and predicted output 
sequences.

where h(-) is a piecewise linear function, x  =  [a u ,^ ]^  y  =  [yi, 2/2]T, and the noise 
vectors are chosen as w f jV(0, diag{0.0082,0.082}), v t ~  A /\0 ,0.005 x I). The task of 
system identification is to train a neural network, given the input-output pairs, to learn 
the underlying robot arm dynamics and to provide a predictive model for the dynamics. 
A total set of 630 pairs of input-output data is constructed, where the input sequence 
follows a piecewise linear dynamics subject to a Gaussian noise perturbation as described 
in (Chen, 2003a). In order to track the system dynamics, we apply Algorithm-2 to train 
a two-layer MLP net2-6-2, using 20 particles. The system identification results are shown 
in the right panel of Figure 6.10. As shown in the figure, the network quickly tracks the 
system dynamics, roughly within about 50 iterations.

O n-line and  O ff-line Identification  o f N on lin ear D yn am ics. We further consider 
another system identification task. The data were obtained by simulation of an open-loop 
stable, nonlinear continuous system, which is unknown to the modeler and therefore is 
regarded as a black-box.5 The data consist of a sequence of input-output pairs with 500 
samples; they were further scaled with zero mean and normalized appropriately before 
applying for training. Similar to the previous example, we use Algorithm-2 to train a

5The data file, spmdata.mat, was obtained from the Matlab© (the Math Works, Inc.) system identi
fication toolbox (No rgaard, 2000).
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Figure 6.12: Off-line learning results of training and testing sets using SISO structure.

two-layer MLP netl-4-1, using 50 particles. Again, note that the learning is performed in 
an on-line fashion. One trial of prediction result is shown in Figure 6.11. As seen from the 
figure, the on-line system identification result is reasonably good. In addition, we can also 
apply the network for off-line learning to this system identification task; once the learning 
is accomplished, new data are used to test the generalization performance. It should be 
noted that since in batch learning all the data are accessible, the data can be analyzed 
for model order validation, and the network architecture is therefore not necessarily to be 
netl-4-1.

First, let us consider a single-input, single-output (SISO) identification structure; 
namely, we use the same network architecture netl-4-1 as in on-line learning. Figure 6.12 
shows the off-line learning results (using 10 particles) of the training and testing data sets. 
As observed in the figure, the SISO identification result obtained from off-line learning 
is utterly different from Figure 6.11; the network’s behavior seems to recover the input 
rather than to approximate the output.

Second, we consider a multiple-input-single-output (MISO) identification structure, 
where the model order of the data is more than one. Specifically, we use a network archi
tecture net2-6-l to fit the data, where the current output depends on the current input as 
well as the previous output; namely, we assume the data has a nonlinear autoregressive- 
moving-average (ARMA) structure. For comparison, we also fit the data with a linear 
second-order output error (OE) model (using the Matlab® “oe” function in the system
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Figure 6.13: Top panel: off-line training result from the nonlinear neural network. Bottom 
panel: identification result from the linear OE model.

identification toolbox). As expected, the linear identification result is less oscillating, 
with a smoothing effect on the output observations. In contrast, the nonlinear off-line 
MISO neural network model produces a better prediction result than the linear model 
(Figure 6.13), as well as the on-line learning (Figure 6.11) and off-line SISO model (Fig
ure 6.12). In addition, it can be imagined that if we further increase the order of the 
(linear or nonlinear) ARMA model, the prediction performance will be further improved 
for the batch learning.
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6.4 Supervised  Learning v ia  Error E ntropy M inim iza
tion

Information-theoretic learning (Principe et ah, 2000; Erdogmus, 2002) has recently at
tracted intense attention for adaptive systems in the literature. The key theme of information- 
theoretic (supervised or unsupervised) learning is to, directly or indirectly, estimate 
the information-theoretic measures, such as the entropy, KL divergence, or generalized 
Ciszer’s divergence. A challenge of the information-theoretic (supervised or unsupervised) 
learning is the need of estimating the probability density using an efficient nonparame- 
teric estimator, especially in a high-dimensional space. For difference purposes, different 
nonparametric entropy estimators, such as the higher-order moment expansion, Parzen’s 
kernel estimator, and KD-tree, have been developed. Due to the use of an informative 
metric, information-theoretic learning has demonstrated a lot of potential in machine 
learning.

For a computational simplicity reason, Erdogmus and Principe (2002a,b) proposed to 
use quadratic Renyi entropy to replace the conventional Shannon entropy,6 and used its 
Parzen’s kernel estimator as a potential criterion for supervised learning. As reported in 
(Erdogmus and Principe, 2002a), the neural networks trained with entropy metric, com
pared with the MSE metric, is preferable in the non-Gaussian distributed error scenario. 
Nevertheless, it was also observed that the gradient-based learning often suffers from the 
local minimum problem, even the objective function of entropy is used. In addition, when 
the quadratic Renyi entropy is involved, the gradient estimate by the back-propagating 
error can be quite computationally demanding for a recurrent neural network. Motivated 
by these two issues, we investigate the sampling-based ALOPEX algorithm for train
ing a neural network using error entropy minimization scheme (Erdogmus and Principe, 
2002a,b). It is our hope that the comparatively simple gradient-free and cost function 
independent optimization methods provide an alternative approach for the entropy min
imization scenario. Note that using our learning algorithm, the optimization procedure 
need not be modified, except the objective function is treated differently.

6 .4 .1  P re lim in aries

Let us first briefly review some important concepts regarding entropy. Without loss of 
generality, let £ be a univariate continuous random variable, and p(£) be its probability 
density function. The Shannon entropy is defined as (Shannon, 1948):

Note that the global minimum of Shannon entropy is attained only when p(£) is a Dirac- 
delta function.

/O©
j>«)iogp(o<ie-

-O O

(6.15)

6The Shannon’s entropy is a special case of a-Renyi’s entropy when a  =  1 (from L’Hopital’s rule).
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Another generalized information metric, the Renyi entropy (Renyi, 1976) is defined
as:

Ha( 0  =  — log f °  v°(Z)d£. (6.16)
± Ot J

It is known that when a  —> 1, the Renyi entropy reduces to the Shannon entropy (Cover 
and Thomas, 1991). Note that when a  — 2, (6.16) yields the quadratic Renyi entropy:

/
O O

p2m .  (6.i7)
■OO

Using the Parzen’s kernel windowing technique (Parzen, 1967), the pdf of random
variable £ (which corresponds to the error signal in the supervised learning case) can be
written as:

p(«) =  i £ i f ( e - & ; < r 2), (6.18)
i= 1

where i  denotes the number of total observations; and AT(-; a2) is a symmetric, continuous, 
differentiable, and unimodal kernel function with a being the width parameter. A common 
kernel is the Gaussian kernel and a corresponds to the standard deviation. Plugging the 
Parzen’s estimator (6.18) to (6.17) yields the quadratic Renyi entropy estimate (Erdogmus 
and Principe, 2002a):

& ( ( )  =  - l o g V © , (6.19)
£ 1 1  

n o  = Q i > ( « - « < ; ^ ) ) 2 = £ £ £ * « < - 0 ; 2 < A  (6.20)
i —1 i = 1 j = 1

where V(£), the argument of the logarithm in quadratic Renyi entropy is called the 
information potential (Principe et al., 2000). Note that when £ =  0, 7 2̂(C) achieves 
the minimum — log AT(0; 2cr2) by observing that

£ £

i z  -  0 ;  2a2) <  f K ( 0; 2a2). (6.21)
i=l j=l

In order to minimize the error entropy, we often need to calculate the gradient, the 
first-order derivative w.r.t. the unknown parameters (Erdogmus and Principe, 2002a,b).
For the (feedforward or recurrent) multilayer networks, calculating the gradient =

dVQp- can be computationally demanding; in addition, it can still suffer from the local
minimum problem. These two issues motivate us to use the ALOPEX-type algorithms 
developed earlier for training the neural networks.
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6 .4 .2  E x p er im en ta l R esu lt

As noted in (Erdogmus and Principe, 2002a), since entropy is independent of the expected 
mean of the random variable, training with entropy metric will lead the network to con
verge to a set of optimal weights, which may not yield zero-mean error; this problem can 
be rescued by properly modifying the bias of the output unit of the neural network to yield 
a zero-mean error over the training data set just after the training process is terminated.

We consider training a RMLP network for a chaotic time series prediction problem 
(Haykin and Principe, 1998; Patel and Haykin, 2001), which can be viewed as an off-line 
regression problem. Specifically, the continuous-time Lorenz dynamics is described by 
three coupled nonlinear differential equations:

xt =  - a x t +  ayt , (6.22a)
yt =  - x tzt +  rx t -  yt , (6.22b)
zt =  XtUt ~  bzt , (6.22c)

where a =  10,6 =  8/3 , and r =  28. Using a step-size of 0.01, a total of noise-free 10000 
samples are generated. After discarding the first 2000 samples to avoid the transient 
period, the subsequent 5000 samples are used as training set and the rest 3000 samples 
are used as testing set; all of samples are normalized within the region (—1,1). The 
input-output data are constructed, in light of the Tokens’ Theorem (Takens, 1981), as 
follows

Xj — [Xj, Zj_T, • • • , Xt—(dE—2)r) Xf—(dE~ 1)t] )
Vt ~  %t+Tl

where d# =  3 and r  =  4 are the embedding dimension and the embedding delay parameters 
of the Lorenz x-axis data, respectively. The recurrent network architecture is chosen to 
be net4-8-l, with one feedback loop from the output to input layer. For optimization 
convenience, we choose the objective function as a form of modified quadratic Renyi 
entropy:

E  =  -fil2(e) +  log K  (0; 2a2)

=  - lo g  ( ' ^ r ' ^ T K ( e i -  ey, 2<72)'j +  2 log £ +  log K  (0; 2cr2)
k i=i j =i /

=  - l o g ^

which, different from (6.19), has a zero minimum such that exp(—E m in )  =  1; the error 
between the desired and network outputs is defined as: et =  yi — & i =  1, • • • the 
constant offset can be calculated in advance.

The training phase is terminated after 10,000 iterations or no further improvement is 
observed; the step-size parameters are gradually decreased after the first 1000 iterations.
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Figure 6.14: Top left panel: prediction result on training data. Top right panel: prediction 
result of testing data. Bottom two panels: a comparison between the original and the 
learned Lorenz dynamics.

Due to the nature of the difficulty in learning chaotic dynamics, the error curve usually 
exhibits certain oscillation at the initial learning stage. Upon completion of training, 
a close-loop or open-loop evaluation can be performed for the testing set. The four- 
step-ahead prediction result of training data and the iterated prediction result of testing 
data are shown in Figure 6.14. As seen from the figure, the network has approximated 
reasonably well the chaotic dynamics. Figure 6.15 shows the histogram of the prediction 
errors for the training set, which indicates a non-Gaussian characteristic.

Although theoretically appealing, a disadvantage of error-entropy minimization is the 
requirement of an accurate kernel estimator. However, the width of the optimal kernel size 
is often unknown and requires a trial-and-error procedure; the selection procedure becomes 
even complicated when the error is high-dimensional. Another main disadvantage of this 
learning paradigm is that it is computationally prohibitive (even for off-line learning) to 
calculate the error entropy if the number of the training samples, £, is very large, which 
requires 0 ( £ 2) operations; it is even worse for the sampling-based ALOPEX algorithm,
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Figure 6.15: Prediction error histogram of the training data for Lorenz time series pre
diction.

whose complexity is of 0 ( £ 2NP). Hence, the tradeoff between the performance gain and the 
computational cost is an important issue to be considered in practice. In our experiments, 
no significant performance difference was observed between using the MSE criterion and 
entropy minimization; however, the computational time using entropy minimization is 
significantly higher.

6 .4 .3  A  N o te  on  th e  O b jective  F unctions

Although the ALOPEX-type optimization procedure is independent on the objective func
tion to be used, the form of the objective function has a direct influence on the optimiza
tion or learning performance; it is worth making some comments here.

• The most popular objective function is the minimum mean-squared-error (MMSE), 
which assumes a form of L2 norm (let e be the error signal, L2 norm is defined 
as E(e)  =  ||e||2). From a statistical estimation viewpoint, L2 norm corresponds 
to the maximum likelihood estimation by assuming the error signal e  is Gaussian 
distributed: p(e) oc exp(—||e||2). If e is zero-mean, then MMSE can be viewed as a 
minimum variance estimation. With a fixed variance, Gaussian density is known to 
have a maximum entropy (Cover and Thomas, 1991):

# ( x )  <  ^ logdet(Cov[x]) +  ^log(27rexp(l)),
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Figure 6.16: A geometrical illustration of different norm criteria.

where the second term at the right-hand-side is a constant. Therefore, under the 
constant entropy constraint, MMSE can also be viewed as a minimax estimator.

•  Li  norm takes the absolute value of the error, E(e)  =  |e|; from a statistical estima
tion viewpoint, it assumes the error e is Laplacian distributed: p(e) oc exp(—|e|). 
Lqo norm is defined as |e|oo =  max* [ |; minimizing the Loo norm is a minimax 
estimation problem. A geometrical illustration of the difference between different 
norm criteria is illustrated in Figure 6.16.

•  If the objective function is a form of the cross-entropy (in two-class classification), 
the data are assumed to be i.i.d. and follow the Bernoulli distribution:

i

where y* denotes the desired posterior probability of the ith  pattern, and tji denotes 
the network output associated to the zth input pattern. Minimizing the negative 
log-likelihood of the above distribution yields the form of cross-entropy (6.10). See 
Bishop (1995) for more discussions on the objective (error) function.

•  If the objective function is a form of the entropy, E(e) =  i f  (e); let V =  exp(—if(e)), 
then V  denotes the effective state space volume of the random variable e. Ideally, to 
minimize the error entropy, we hope that p{e) is a Dirac-delta function; in contrast, 
Gaussian density will produce a maximum entropy given the fixed variance.
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6.5 D iscussion

6 .5 .1  Tricks o f  th e  Trade

It is noted that there are many tuning parameters involved in our proposed sampling- 
based ALOPEX algorithms. In practice, finding these optimal parameters might be time- 
consuming and discouraging. In light of our empirical experiments, we summarize some 
rules of thumb for selecting those free parameters:

•  Step-size/learning rate parameters: For the ALOPEX-B algorithm, rj is often chosen 
in the range [0.05,0.1], 7 is fixed to be 0.01 in most of our experiments.

•  Forgetting parameter: In the ALOPEX-B algorithm, A is often taken from the 
region [0.35,0.7]; the smaller the A, the less influence is induced by previous error 
estimates. For on-line learning (on sequential data), A is often set as a small value.

•  Relaxing parameter: a  is taken from the region [—1,1]. when a  >  0, it is over
relaxation, when a  <  0, it is under-relaxation. In the initial training, a  can be set 
as positive to accelerate the initial convergence; as the error surface becomes more 
hilly, we can switch to under-relaxation. In our experiments, a  is always set as a 
negative value for on-line learning.

•  Momentum coefficient: In light of physical interpretation (Qian, 1999), gradient- 
type optimization can be imagined as moving a massless particle (i.e., 0) towards 
the bottom of a potential well. Imagining the massless particle as a particle with 
a quantitative mass, we know from Newton mechanics that the greater the mass, 
the greater is the momentum. Since the normalized importance weights are directly 
related to the likelihood values, ideally it is hoped that the “important” particles 
(with higher likelihood) are more active, therefore we assign greater momentum 
values to them, and smaller momentum values to the “idle” particles. Heuristically, 
for the ith particle, we may set /?(*) =  W^Po,  where j30 =  1 — rj is a constant. 
Besides the preceding sophistication, an alternative, simple setup can be: @ =  77/10.

•  Diffusion coefficient: a  initially is set as a small constant (depending on the region of 
the parameter 0); as batch learning progresses, it may follow an annealing schedule 
after 1000 iterations a — 00/ log(t). In on-line learning, o  does not employ any 
annealing schedule.

•  If parameter 0  is subject to a positive constraint (e.g., the width parameter of the 
RBF), one can introduce a surrogate parameter, #  =  ln 0  or 0 =  exp(0), and then 
use the ALOPEX procedure to update the surrogate parameter'd (with a different 
prior, of course).
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6 .5 .2  S ta tis t ica l P h y sics  In terp reta tion

The ALOPEX algorithm itself originated from a statistical physics idea, similar to the 
Metropolis algorithm (Metropolis et a.i., 1953) and simulated annealing (Kirkpatrick et al., 
1983). It is therefore befitting that we explore a statistical physics interpretation of the 
sampling-based ALOPEX algorithms in terms of an interacting particle system (IPS). 
The IPS (Liggett, 1985) can be regarded as a dynamic interactive system with a col
lection of many particles interacting according to simple and local rules. IPS has been 
successfully utilized to model such diverse phenomena as magnetism, population growth, 
and propagation of information and opinions.

Imagine the sampling-based ALOPEX algorithm as an interactive dynamical compo
sition system. On the one hand, the elements in the system are spatially independent 
(i.i.d. samples), and temporally correlated (correlative learning rule); on the other hand, 
the elements are globally correlated (from the correlation learning rule, the change of each 
element is influenced by others), but also locally independent. Finally, the system is not 
only cooperative (in parameter space, because every element contributes to the same en
ergy function) but also competitive (in sample space, because different samples try to find 
the minimum energy, so the one that finds a locally minimal energy has the highest like
lihood). In light of these observations, the sampling-based ALOPEX algorithm provides 
a simulation analog for systems with combined cooperative and competitive behavior, 
which we deem to be a feature of the human brain.

6 .5 .3  H in d sigh t

Upon finishing the work reported herein over one year ago, some day I happened to 
reread Marvin Minsky’s illuminating review paper “Steps towards artificial intelligence”. 
Surprisingly enough, I found that in the article, Minsky has discussed a similar idea over 
40 years ago; in particular, it reads (Minsky, 1961):

Multiple simultaneous optimizers search for a (local) maximum value of 
some function E ( x i , . . . ,  xn) of several parameters. Each unit Ui independently 
“jitters” its parameter x, perhaps randomly, by adding a variation di(t) to a 
current mean value ra^i). The changes in the quantities £j and E  [namely, Ax* 
and A E] are correlated, and the result is used to slowly change m*. The filters 
are to remove DC components. This technique, a form of coherent detection, 
usually has an advantage over methods dealing separately and sequentially 
with each parameter. Cf. the discussion of “informative feedback” in Wiener 
[1948, p. 133]. A great variety of hill-climbing systems have been studied 
under the names of “adaptive” or “self-optimizing” servomechanisms.

The thoughtful reader can readily see the above statement is indeed a description of the 
idea underlying the stochastic correlative learning algorithms.
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Chapter 7 

Conclusions

7.1 Sum m ary

In summary, we have systematically investigated stochastic/Monte Carlo approaches for 
different machine learning problems. The concept of correlation plays a vital role through
out the thesis, and we argue that correlation serves as a mathematical framework for many 
statistical learning algorithms, as reviewed in Chapter 2. In particular, the ALOPEX, 
being a stochastic correlative learning rule, establishes the foundation of this thesis. The 
motivation for using ALOPEX or its variants as optimization tools for learning arises from 
its several appealing features: (i) gradient-free; (ii) network architecture independence; 
(iii) objective function independence; (iv) synchronous update; (v) simplicity and ease of 
hardware implementation. In so pursing the research, we have kept several goals in our 
mind:

•  exploring flexible optimization procedure for difficult or global optimization prob
lems;

•  combining stochastic and deterministic algorithms (in analogy with the free will and 
volition) to boost conventional algorithms, for that Monte Carlo approaches play a 
key role;

•  applying sequential Monte Carlo and MCMC methods for seeking a Bayesian solu
tion in various estimation and inference scenarios.

As evidenced in our investigations, Monte Carlo optimization provides a promising frame
work for achieving those goals; in addition, it also offers a tradeoff between the algorith
mic performance and computational complexity. In general, increasing computational 
resources improves optimization performance.

In this thesis, we have proposed several new theoretical and algorithmic developments; 
we have also succeeded in applying the developed algorithms to many (including some 
novel) applications. The main contributions of the dissertation are highlighted here:
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Stochastic correlative learning algorithm s for perceptual learning:

•  Proposing a modified version of the ALOPEX algorithm to improve the con
vergence speed.

•  Proposing a biologically plausible stochastic correlative firing mechanism for 
several figure-ground segregation tasks in sensory (visual and auditory) per
ception, and applying (for the first-time) the ALOPEX to accomplish several 
perceptual tasks. In the simplified cocktail party problem, the algorithm is 
capable of extracting the auditory stream using two sensors given more than 
two (up to 4) non-Gaussian sources.

•  Applying the developed ALOPEX algorithm to optimize the design parameters 
of a Neurocompensator with a novel objective function, as an ingredient of a 
model-based hearing-aid device.

M onte Carlo m ethods for Bayesian inference and learning:

•  Developing a gradient proposal particle filter and a Turbo-particle filter, ap
plying the improved algorithms to two synthetic target tracking problems and 
a real-life MIMO wireless channel estimation problem.

•  By combining particle filtering and the ALOPEX procedure, developing two 
novel Monte Carlo sampling-based ALOPEX algorithms for sequential param
eter optimization. In particular, applying them to various neural network 
learning problems, including off-line pattern recognition and regression, on
line tracking and system identification.

•  Applying the ALOPEX-type algorithms to supervised learning using the quadratic 
Renyi entropy minimization scheme.

The contributions have been justified by a number of peer-reviewed publications listed in 
Chapter 1.

7.2 C losing R em arks

Correlation constitutes a fundamental mechanism of the brain, with crucial role in various 
human functions including human perception, association, learning, and memory recall; 
it is therefore not surprising to see (Chapter 2) that many existing learning rules can be 
traced to the root of correlative learning. Correlation-based learning and gradient-free 
optimization open an avenue for many machine learning and neural computation topics.
In particular, we believe that some of the work reported in this thesis is appealing for 
learning the hierarchical networks, which have modular and feedback structures; when 
the algorithms are viewed in the context of spiking neurons, they do possess a neurobio- 
logically plausible format. Specifically, the benefit can be twofold:
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•  First, in perceptual learning, once we design a global objective function, we are 
capable of applying the stochastic correlative learning rule for updating the un
known parameters. Multiple objective functions are also allowed to be alternatingly 
optimized, for example, the “look-think-do” process discussed in Chapter 3.

•  Second, we are also capable of performing some sort of spiking neuron optimization 
(Chapter 4 can be regarded as an effort of this type). Now, we can monitor the firing 
rate of the neuron (or population of neurons) and use that information to adapt the 
action of a neural network; we can also measure the correlative or synchronous firing 
rate between different groups of neurons and use it to optimize the neural codes.

As seen in this thesis, Monte Carlo sampling methods provide a powerful tool for prob
abilistic inference and optimization. We also believe that some of the work reported in 
the thesis might have a beneficial impact on the industrial practice. In tackling real-time 
sequential data, we are obliged to design simple yet reliable toolkits for either prediction, 
control, or communications. With the ever-growing computing power, now we have the 
option and freedom to choose a tradeoff between computational complexity and perfor
mance gain. As shown in many instances discussed in Chapters 5 and 6, a careful design of 
Monte Carlo simulations might significantly boost the performance of conventional (often 
being deterministic) approach.
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A ppendix A  

Expectation-M axim ization (EM ) 
Algorithm

A .l  EM  A lgorithm  as a L ow er-B ound M axim ization

Given some observation data x  and a model family parameterized by 0 , the goal of the 
EM algorithm is to find 0  such that the log-likelihood log p(x \6 )  is maximized (Dempster 
et a.l., 1977).

T heorem  A . l  (Cover and Thomas, 1991) If f  is a convex function and x is a random 
variable, then

bility 1, i.e. x is a constant.

Assume that a, >  0, ]T). aj =  1, g(j) >  0, in fight of the Jensen’s inequality (A .l), we 
have

which is also known as the geometric mean inequality.

Let f (6 )  =  p (x ,0 ) , by introducing a hidden (latent) variable z  (without loss of 
generality, we assume z  to be continuous-valued), we rewrite f {6 )  as

E [/M ] > / ( E f t ) (A.1)

Moreover, if  f  is strictly convex, then equality in (A .l)  implies that x =  E[x] with proba-

(A.2)

Given a proposal distribution q(z) subject to f z q (z) =  1, in light of the Jensen’s inequality 
we obtain:
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Define the logarithm of the lower-bound g (9 ,q (z))  as G (9 ,q ):

G (6,q) =  log g (0 ,q {z))  =  J  dz (q (z) \ogp(x, z , 0) -  q (z) lo g g (z )) (A.5)

Now we want to optimize 0  to maximize the lower-bound G (0 ,q ), which is equivalently 
to maximize f (0 )  since f z q (z )d z  =  1; in light of the Lagrange multiplier, we have an 
alternative form of G (0, q):

G (0,q) =  A (l -  J  q (z )d z Sj  +  J  d z (q (z )  \ogp(x, z ,  9) -  q (z) log 9(2:)) (A.6)

Taking the derivative of G {0 , q) with respect to q(z) and setting to be zero yields 

dG (9, q)
dq(z)

=  —A +  \ogp(x, z ,  0) — log q(z) - 1  =  0, (A.7)

which further follows that log q(z) =  logp(x, z , 9) — (A +  1) and

p ( x ,z ,0 )
Q(z) f z p(x ,z ,0 ) d z  

Replacing the above equation to (A. 4), it follows that

p (z \x ,0 ) (A.8)

« • ■ «  -  n ( g S g )

9 (*)

=  P(x,0y*g(z)dz
=  p {x ,0 )- (A.9)

Hence maximization of g (0 , q(z)) is indeed the maximization of f (0 )  given the current 
estimate 0. For G (0 ,q (z )) , we may also rewrite (A.5) as

G {9 ,q {z))  =  Eq{z log

=  — E ,'q(z)

P( x , z , 0 )  

?(*) 
q{*)log +  logp(cc, 9)

p {z \x ,0 )  
D (q (z )\\p (z \x ,0 ))  + lo g  p {x ,0 ) . (A.10)

The first term of the right-hand-side of equation (A. 10) is the KL divergence between 
distributions q(z)  and p (z \x ,0 ) .  When q(z) =  p (z \x , 9), the distance metric between 
two distributions is zero and {G(0, q (z ))}max =  logp (x ,0 ).

In summary, EM algorithm consists of two alternating steps:
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• E-step: Find q(z)  to get the lower bound of f(0 );

• M-step: Given the current estimate 0, maximize (or increase) the lower-bound 
G(0, q {z)) over 0.

For more discussions on generalized EM algorithms (in either E or M step), see (McLachlan 
and Krishnan, 1997; Neal and Hinton, 1998).

A .2 EM  A lgorithm  as an A ltern atin g  Free-Energy
M axim ization

Prom the statistical physics perspective, the EM algorithm can be understood as an 
alternate maximization of the free energy (Neal and Hinton, 1998).

Given the observed data x , we can rewrite the log-likelihood of parameter 0  in the 
following form:

C{0) =  logp(®,0) =  l o g ( ^ p ( a ; , z , 0 ) )
Z

=  maxJr(q,0), (A .11)
q € V

where V  denotes the set of all probability distributions defined on the missing variable z , 
and J-(q, 0) is the so-called free energy:

F {q ,0 )  =  C{0) -  D (q (z )\\p (z \x ,0 ))

=  £ W - ^ ( , ) l o g ( R ^ L y) rf,  (A.12)

=  E,(*j \o g p (x ,z \0 ) ] +  H(q)

= J  q (z ) \o g p (x ,z \0 )d z  -  J  q(z) log q (z )d z , (A.13)

where the first term of (A.13) denotes the energy, whereas the second term denotes the 
entropy (which is independent on 0). The EM algorithm consists of alternating maxi
mization steps with respect to q and 0, respectively:

•  E-step: Fix 0, find and solve q =  arg maxjF^', 0);

•  M-step: Fix q, find and solve 0  =  a rg m a x ^ g , 0').
o'
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A .3 EM  A lgorithm  for F ittin g  a G aussian  M ixture  
M odel

Consider a d-dimensional multivariate Gaussian mixture model

K

P(x ) =
3 = i

=  v f r J m i exp H |x ~ ~  (A'14)

where K  denotes the number of mixtures, (/i-, Ej )  denotes the mean and (full) covariance 
matrix of the j th mixture; p (j) =  Cj denotes the prior probability of the j th mixture, and 
p(x |j) denotes the probability of x  generated from the j th  mixture.

Given £ i.i.d. observations (x^}|=1, the EM algorithm fitting a iGmixture Gaussian 
can be derived as follows (Bishop, 1995; Xu and Jordan, 199G; Duda et al., 2001):

E-step:

P.^pO|x.)-ELp(xj|fcK-  p(xj) .

• M-step:

jnew
Cj =  (A. 16)

2 = 1

i
X)p(j|xi)xi „  „

i=i E iPijxi _  EtPpXi..new  _ t = l  Z - jx  t'X3 -n'% _  / A  1 7 \
~  —  -  ^  _  -  n -n ew  ’

E i> 01x .)
E i  va

2=1

E™w =  — -------------- 7----------------------- • (A. 18)3 g ^ n e w  v '

The computational complexity of above procedure is (D(d£ +  K £2).

Given £ i.i.d. samples {xj}f=1 that satisfy (A. 14), the log-likelihood of the data is 
calculated as

t t
£  =  log Y[  p(xt) =  ^ 2 log • a 19)

i = l  i = 1
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Running the E and M steps alternatingly will produce a monotonically increasing like
lihood or log-likelihood sequence until a local maximum or saddle point is approached. 
The convergence analysis of the EM algorithm for Gaussian mixture model is referred to 
(Xu and Jordan, 1996).
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A ppendix B

Markov Chain M onte Carlo 
(M CM C) M ethods

B .l  B ackground

The Markov process is a typical stochastic process for modeling the physical world; the 
Markov property (Definition 5.2) underlies (and certainly simplifies) the causality inside 
many physical processes. Within the Markov assumption, by introducing the notion of 
hidden “state” , we can obtain the hidden Markov process, which is defined as a probabilistic 
function of Markov chains. See Ephraim and Merhav (2002) for an excellent review 
regarding the related topics.

We start with introducing some basic concepts underlying the Markov chain theory.

transiency: The burn-in period that Marov chain needs to reach the equilibrium.

recurrent: Let Pf be the probability returning to x* first time at time t, where Ff =  
0, P- =  Pr(xt =  i , x fc ^  i ,k  =  1, . . .  , t  -  l |x 0 =  if, let

O O

t=i

if Pi =  1, i is recurrent; if Px < I, i is transient. Define m* =  )T)t tP /, if m* <  oo, i 
is positive recurrent; if ra* =  oo, i is null recurrent.

irreducibility: Any state can be reached from any other state in a finite number of 
iterations.

reversible: The reversibility is defined by the following detailed balance condition:

7r(x)A(x,x/) =  7r(x/)A'(x/,x),
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where 7r(x) is the invariant probability distribution, and A (x ,x ')  denotes the tran
sition kernel from state x to state x'. Put in words, the unconditional probability 
of moving x  to x' is equal to the unconditional probability of moving x ' to x.

ergodicity: If a Markov chain is irreducible, aperiodic and positive recurrent, then it is 
ergodic; in such a situation, there exists a unique stationary (steady-state) distribu
tion 7r independent of the initial state.

Markov chain theory is mainly concerned with finding the conditions under which 
there exists an invariant distribution Q and conditions under which iterations of transition 
kernel K  converge to an invariant distribution. The invariant distribution Q satisfies:1

Q{dx!) =  f  AT(x, dx')7r(x)dx,
Jx

7r(x') =  f  AT(x, x /)7r(x)dx.
Jx

Roughly speaking, MCMC algorithms turn the Markov chain theory around. The 
invariant distribution Q is assumed to be known which corresponds to the target density 
7r(x), but the transition kernel is unknown. MCMC methods produce Markov chains that 
are aperiodic, irreducible and fulfill the reversible condition; the samples are generated by 
a homogeneous, reversible, ergodic Markov chain with an invariant distribution. In order 
to generate samples from 7r(-), the MCMC methods attempt to find a transition kernel 
K(x.\dx!) that asymptotically leads to 7r(-), given an arbitrary starting point.

M etrop o lis-H astin gs A lgorith m . The Metropolis-Hastings algorithm (Metropolis et al., 
1953; Hastings, 1970) is the first Monte Carlo algorithm; it is “among the top 10 scientific 
algorithms of the 20th century” according to the January/February 2000 issue of Com
puting in Science & Engineering. The algorithm is named after one of the inventors, Nick 
Metropolis, dated back in Manhattan project at the Los Alamos Laboratory during the 
World World II; it was generalized by Hastings in 1970.

The underlying idea of the Metropolis algorithm is simple: Assume that g(x, x') is 
the proposal distribution that does not satisfy the reversibility condition. Without loss of 
generality, suppose 7r(x)q,(x ,x /) >  7r(x')g(x/, x), which means the probability moving from 
x  to x ' is greater (more frequent) than the probability moving from x ' to x. Intuitively, 
we want to change this situation to reduce the number of moves from x  to x'. In doing 
so, we introduce a probability of move, 0 <  a{x,x.') <  1; if the move is not performed, the 
process returns x  as a value from the target distribution.

1We assume that the state x  is continuous-valued; for discrete-valued state, the integration should be 
substituted by the sum operation.
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Now, the transition probability from x  to x' becomes:

Pmh(x,x') =  g(x,x/)a(x ,x ')> (B.l)
7r(x')q(x',x), /v i mm ry { ’tF-£7 ,̂ 1 , if 7r(x)g(x,x/) >  0, a(x , X ) =  < L 7T(x)g(x,x') > J> V > } . (B.2)

[ 1 otherwise

Thus, the probability that the Markov process stays at x  can be written as:

1 —  f  g (x ,x /)a (x ,x /)dx/, (B-3)
Jx

and the transition kernel is given by

-^mh(x,dx!) =  g (x ,x /)o:(x,x/)cix/ +  1 — J  q('x,xl)a{x,x!)dx!^Sx(dx!). (B.4)

Rem arks:

If g(x, x') =  g(x', x) (symmetric), the probability of move only depends on the ratio 
7r(x/)/7r(x) (Metropolis algorithm), without the need of the normalizing constant.

Design of o:(x, x') is not unique and is crucial to the MCMC algorithmic effi
ciency. For instance, the probability of move in (B.2) can be alternatively defined by 
a(x , x') =  v~/v 7^ \91X/X\ <— n, which also satisfies the detailed balance condition.' 1 ' TTjx')g(X‘ J

If q(-, •) is independent of current sample value, it reduces to a Metropolized inde
pendence sampler (Hastings, 1970).

The draws are regarded as the samples from the target density only after the chain 
has passed the transient phase; in practice, the convergence of Markov chains of
ten needs diagnosis, although theoretically it is guaranteed to converge under mild 
regularity conditions.

The efficiency of Metropolis algorithm is determined by the ratio of the accepted 
samples to the total number of samples. Too large or too small variance of the 
proposal distribution may cause inefficient sampling.

B .2 M C M C  A lgorithm s for M achine Learning

In recent decades, thanks to the ever-increasing computational power, MCMC algorithms 
have been increasingly popular and powerful for machine learning. We briefly mention a 
few of them in the below. See (Andrieu et al., 2003) for an excellent tutorial.
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Simulated annealing (Kirkpatrick et al., 1983) is one of the first efforts to use MCMC 
scheme for optimization. Without loss of generality, suppose the goal is to find the 
optimal x* that achieves the lowest potential energy E(x); also assume that the 
posterior is of an exponential form:

P(x ) =  7? exp[—£(x)/£;T]. (B.5)

In the equilibrium state, p(x) satisfies the Boltzmann-Gibbs distribution (where k 
denotes the Boltzmann constant, and T  denotes the temperature). Note that the 
probability ratio

p(x') r E(x') — E(x)
—r -r  =  exp p(x)

exp [—A E (x) /  kT]
T

is independent on the partition function Z. The procedure is summarized as follows:

1. Starting with initial point xo and initial temperature To;
2. For t — 1, 2, • • ■, move x* to xt+i;
3. Draw u ~  W(0,1);
4. If u < exp[—(£'(xt+1) — E(xt))/Tt], accept the move and set x t+i =  x t+i, otherwise 

keep the present value: xt+i =  xt (or add some random noise);
5. Reduce the temperature T, repeat the Step 2 through 5.

Gibbs sampling (Geman and Geman, 1984) can be viewed as a Metropolis method 
in which the proposal distribution is defined in terms of the conditional distri
bution of the joint distribution and every proposal is always accepted. Gibbs 
sampler uses the concept of alternating (marginal) conditional sampling. Suppose 
x  =  [xi, x2, • • • , £jv]T, the sampling procedure runs as follows:

1. At iteration t =  0, draw xo from the prior distribution p(xo);
2. At iterations t =  1,2, • • •, draw x ij  from p(xi\x2,t-x,xz,t-h  • ■ • , %N,t-1);
3. For k — 2, - •• , N - 1, draw xk<n fromp(xk\xiit> ■■ ■ .Xfc-i.t-i, • • • , Xfc+i.t-i,' ‘ ‘ ^N ,t-i)
4. Draw xN>t from p(xjv|xi,t, x2,t, • • • , xjv-i,t).

The above sampling order is systematic; however, it can also be replaced by a 
random scan order. From the missing data perspective, there is a close connection 
between Gibbs sampling and EM algorithm in exponential family models (Hastie 
et al., 2001).

Data augmentation was first proposed by Dempster et al. (1977) in a deterministic 
framework for the EM algorithm, and later generalized by Tanner and Wong (1987) 
for posterior distribution estimation in a stochastic framework, which can be viewed 
as a Rao-Blackwellization (Robert and Casella, 1999) of the marginal density. It can 
be also viewed as a two-component Gibbs sampling, which performs a Monte Carlo
E-step for the EM algorithm. See (van Dyk and Meng, 2001) and the references
therein for more details.
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•  Dynamic weighting (Wong and Liang, 1997) can be viewed as a data augmentation 
approach for simulating Markov chain, in that it introduces importance weights 
into dynamic Monte Carlo process to provide a means for the system to make large 
transitions not allowable by the standard Metropolis transition rule. It has been 
successfully used for Monte Carlo sampling and global optimization of several NP- 
hard problems.

•  Hybrid Monte Carlo (Duane et al., 1987) method augments the state space x  with 
a momentum variable p  and uses two proposals for drawing samples. The first 
proposal randomizes the momentum variable with the state x  unchanged; the second 
proposal changes both x  and p  using the simulated Hamilton dynamics. In practice, 
one has to use leapfrog discretization for simulating the dynamics (see below).

B .3  H ybrid  M onte Carlo S im ulation

In the hybrid Monte Carlo (HMC) simulation, the original state space x  G is aug
mented with a momentum variable p  € with an associated Hamiltonian dynamics:

W(x, p )  =  E (x) +  /C(p), (B.6)

where E(x) is the poten tia l energy function, whereas JC(p) =  \ p TP is called the kinetic  
energy.2 The samples {x }  are then drawn from the joint distribution:

-FW(x, P) =  \  exp(-W (x, p ))  =  exp(—£ (x ))  exp(-/C (p)), (B.7)

where Z  is a normalizing constant. The ideal (continuous-time) Hamiltonian dynamics

m  . m  . . .

a ^  =  x ' x  =  p  (a 8 )

is tim e-reversible, volum e-preserving , and energy-preserving  (i.e., ^  =  0), and the result
ing moves leave the posterior invariant. Namely, given a starting point (x ® ,p ^ )  ~  P, 
then after t  steps of Hamiltonian dynamics evolution, the new configuration (x ^ ,p ^ )  
also follows the probability distribution P. In computer simulations, it was common (Du
ane et al., 1987; Neal, 1996; Mackay, 1998; MacKay, 2003) to use a discretized leapfrog 
step to simulate the Hamiltonian dynamics:

x(t +  t )  =  x(t) +  r p ( t  +  r /2 ) (B.9)

P (t +  r / 2) =  p ( t - r / 2 ) - t 9 E ^
d x

(B.iO)
x(t)

2An alternative definition is /C(p) =  fZf=i where Pj(j = 1, • • • , N) is the momentum component 
and nij is the “mass” associated with the jth  element of x.
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where r is a small step-size parameter. The step-size controls the sampling efficiency: if it 
is too small, it takes a long time to converge to the equilibrium state; if it is too large, the 
dynamics becomes unstable and causes a high rejection rate. The discreteized leapfrog 
lasts L steps and produces a new configuration (x^L\  p ^ ) .  When L =  1, the HMC method 
reduces to the Langevin algorithm, being an approximation to the Langevin diffusion 
process. Each leapfrog move within the HMC per iteration remains time-reversible and 
volume-preserving, but the energy Tt is no longer a constant; therefore, Duane et al. 
(1987) suggested to run a Metropolis step to correct the discrepancy.

In order to improve the efficiency of HMC sampling, it is advised that individual 
momentum components Pj use different step-size parameters for exploration; this is tan
tamount to replacing a uniform step-size scalar with a diagonal step-size matrix for the 
momentum vector p. In the general case, (B.6) is rewritten as H  — E (x) +  |p THp, where 
H is a scaled version of the Hessian matrix. Though theoretically appealing, this scheme 
does not scale well for the large systems.

Horowitz (1991) also suggested a momentum persistence approach to improve the rate 
of exploration in the HMC; in which he replaced p wherever with pcosu; +  v  sincu, where 
v  ~  J\f(0 ,1) is a standard Gaussian distributed vector variable, and u  is set as a small 
angle (or equivalently, p is replaced by a p  +  \ / l  — o?v  where 0 <  a  <  1).
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